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Abstract

We compare the performance of human and artificially intelligent (AI) decision makers in
simple binary classification tasks where the optimal decision rule is given by Bayes Rule.
We reanalyze choices of human subjects gathered from laboratory experiments conducted
by El-Gamal and Grether and Holt and Smith. We confirm that while overall, Bayes Rule
represents the single best model for predicting human choices, subjects are heterogeneous and
a significant share of them make suboptimal choices that reflect judgement biases described
by Kahneman and Tversky that include the “representativeness heuristic” (excessive weight
on the evidence from the sample relative to the prior) and “conservatism” (excessive weight
on the prior relative to the sample). We compare the performance of AI subjects gathered
from recent versions of large language models (LLMs) including several versions of ChatGPT.
These general-purpose generative AI chatbots are not specifically trained to do well in narrow
decision making tasks, but are trained instead as “language predictors” using a large corpus
of textual data from the web. We show that ChatGPT is also subject to biases that result
in suboptimal decisions. However we document a rapid evolution in the performance of
ChatGPT from sub-human performance for early versions (ChatGPT 3.5) to superhuman
and nearly perfect Bayesian classifications in the latest versions (ChatGPT 4o).
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1 Introduction

We compare the performance of human and artificially intelligent (AI) decision makers

in simple binary classification tasks where the optimal decision rule is given by Bayes

Rule. AI algorithms such as support vector machines or neural networks can be trained

to closely approximate optimal Bayesian decision rules given the relative simplicity of

this narrow domain classification task. Machine learning methods have been extended

to more difficult real world classification problems where the covariates used to classify

outcomes can be very high dimensional (e.g. using mammograms to detect breast can-

cer). A number of studies have shown these specially trained classifiers can perform at

superhuman levels, see e.g. Yoen and Chang (2023).

It is not surprising that humans, whose brains consume only about 20 watts of power,

do not outperform special-purpose machine learning algorithms that are trained with

large volumes of data to approximate optimal decision rules for specific tasks. Kühl et al.

(2022) show that humans possess general intelligence whereas most machine learning

algorithms are designed to work in narrow domains and will not necessarily make sensible

decisions in a huge variety of different (and often unexpected) situations as humans do.

As Hutchinson and Meyer (1994) noted, “From a broader perspective, however, one can

argue that optimal solutions are known for a relatively small number of similar, well-

specified problems whereas humans evolved to survive in a world filled with a large and

diverse set of ill-specified problems. Our ‘suboptimality’ may be a small price to pay for

the flexibility and adaptiveness of our intuitive decision processes.”

Rapid recent improvements in large language models (LLMs) and generative AI sug-

gest that we may be close to the advent of Artificial general intelligence (AGI) where

general purpose algorithms equal or exceed human performance in solving a wide range

of problems even though the algorithms were not specifically trained to do well in specific

narrow domain tasks. Generative AI models such as ChatGPT are deep neural networks

with billions of parameters that have been trained to predict text, sounds and images

using vast databases obtained from the web and other sources. The progress in this area

has been breathtaking, and now a variety of LLMs have demonstrated a capability to

compete with humans on a wide range of intellectual tasks.1
1In the paper we will use interchangeably the abbreviations LLM and GPT (for Generative Pretrained Trans-

former), though the latter is a subset of the former. See section 7 for further discussion and comments on the
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Despite the amazingly rapid improvements, the consensus is that LLMs still lack full

rationality, including the capability to reason and think creatively the way humans do,

and other features associated with intelligence including “consciousness”. The review

by Maslej et al. (2024) concludes that “AI has surpassed human performance on several

benchmarks, including some in image classification, visual reasoning, and English under-

standing. Yet it trails behind on more complex tasks like competition-level mathematics,

visual commonsense reasoning and planning.”

Our study focuses on statistical decision making, building on a large experimental

literature designed to assess the rationality of human subjects in a simple binary classi-

fication problem used in dozens of previous experimental studies in economics and psy-

chology. The decision problem is simple enough to have an optimal solution that is easily

characterized using statistical decision theory and Bayes Rule. Numerous studies in psy-

chology and behavioral economics conclude that humans make suboptimal decisions due

to systematic biases, including “framing” and contextual effects that might be caused by

reliance on heuristics to reduce cognitive burden, see e.g. Tversky and Kahneman (1974).

However this conclusion is controversial due to the use of “real world” situations to

test decision making (e.g. providing a description of a person and asking them to choose

whether they are more likely to be an engineer or a lawyer), since it provides extraneous

information that amplifies the potential for framing effects and stereotyping to mislead

subjects. Grether (1978) noted that Kahneman and Tversky’s experiments had “features

that make the applicability of the findings to economic decisions doubtful” and their

framing of scenarios created “difficulty of controlling the information given when verbal

descriptions or situations are presented. Both of these difficulties could be taken care of

by the use of actual balls in urns or book-bag pokerchip setups.” (p. 71-72). Cosmides

and Tooby (1996) argued that experiments framed in frequentist terms are more likely to

generate behavior that conforms to Bayes Rule since “our inductive reasoning mechanisms

do embody aspects of a calculus of probability, but they are designed to take frequency

information as input and produce frequencies as output.” (p. 3).

We find this logic compelling, and build on the experimental design of El-Gamal

and Grether (1995) where subjects were shown the outcomes of samples of balls drawn

with replacement from one of two bingo cages, A or B, where each contains different
rapidly growing literature that compares human and AI performance over a wide range of domains and problems.
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proportions of red and blue balls. The cage used to draw the sample was selected by

a random procedure, such as choosing cage A if the throw of 6-sided die is 1 or 2.

This induces a credible objective prior probability of selecting cage A. The experimental

controls involve different choices of these prior probabilities, the proportions of red and

blue balls in the two cages, and number of balls drawn with replacement. Subjects were

informed of these parameters and the outcome of the sample drawn from the selected

cage. Based on this information subjects chose the cage they believed was more likely to

have been selected. The experiments by Holt and Smith (2009) used a similar design but

asked subjects to directly report subjective posterior probabilities of cage A.

The “textbook” solution to this problem is to use Bayes Rule to compute the posterior

probability of A and select it if and only if its posterior probability exceeds 1/2. However

the experiments did not presume that subjects actually know Bayes Rule and did not

train them or tip them off about how to make “correct” responses. The objective of

these studies was to assess the extent to which untrained subjects behave as “intuitive

Bayesians” and make instinctive choices that are consistent with Bayes Rule. This should

be the case if subjects are intelligent and greedy since subjects received bonus payments

for choosing the correct bingo cage used to draw the sample. We hypothesize that their

behavior should be governed by an optimal decision rule, i.e. one that maximizes the

probability of selecting the correct bingo cage. It is straightforward to show that choosing

according to Bayes Rule is the optimal decision rule for this problem. Thus, a comparison

of whether humans or GPT is more “Bayesian” is equivalent to a test of their ability to

conceptualize probabilities and optimize.2

To preview our key findings, and convince the reader that AI subjects are not au-

tomatically superior to human decision makers, consider figure 1. The graph plots the

fraction of subjects who chose cage A (y axis) against the true Bayesian posterior proba-

bility for cage A (x axis) using the experimental design of El-Gamal and Grether (1995)

and El-Gamal and Grether (1999) where subjects were shown the outcome of 6 balls

drawn with replacement from one of the randomly selected cages. The thin dotted blue

line is the optimal decision rule of a perfect Bayesian decision maker: choose cage B if the

posterior probability of cage A is less than 1/2 and choose cage A otherwise. The solid
2In the experiments where subjects reported their subjective posterior probability for cage A a more compli-

cated incentive scheme known as a “BDM mechanism” was used that requires subjects to solve an even more
difficult continuous optimization problem that we describe in section 4 of the paper.
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red and blue lines represent two different groups of subjects: one is a group of human

subjects, and another is a group of ChatGPT 4 subjects. As a teaser, we won’t reveal

which group is which at this point and let the reader try to guess, emphasizing the “Tur-

ing test” aspect of our analysis and the possibility that at least the early generations of

GPTs may in fact suffer from some of the same foibles as human decision makers. Further

it is not immediately obvious which of the subject groups exhibits “better” performance.

Figure 1: Which group of subjects, 1 or 2, are GPT and which are human?
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The simple nature of this binary classification problem allows us to obtain an objec-

tive measure of “performance” to compare human and GPT subjects. In section 2 we

introduce the relevant statistical decision theory and define the win function, i.e. the

conditional probability of selecting the correct cage implied by any given decision rule.

The win function is the complement of the loss function in statistical decision theory, so

any decision rule that maximizes the win function necessarily minimizes the loss func-

tion. Using the win function, we define a simple measure of efficiency of a human or

GPT decision maker: the ratio of the expected win probability of the decision maker to

the optimal win probability implied by Bayes Rule. This is a superior measure of perfor-

mance than the commonly used notion of accuracy, i.e. the fraction of a subject’s choices

that coincide with Bayesian choices. Our efficiency measure differentiates between “hard

cases” (where the Bayesian posterior probability is close to 1/2) and “easy cases” (those

where the posterior probability is close to 0 or 1). Among two subjects facing the same
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set of trials and whose choices agree with Bayes Rule on the same total number of these

trials (so the subjects have equal accuracy), the subject who has a greater fraction of

choices that disagree with Bayes Rule on the easy cases will have a lower expected payoff

and thus lower efficiency.

Our re-analysis of the human experiments confirms the conclusions of El-Gamal and

Grether (1995) and Holt and Smith (2009) that humans, on average, closely resemble

Bayesian decision makers. The decision efficiency reached above 96% in both experi-

ments. We detect considerable unobserved heterogeneity in human subjects, with the

most efficient type nearly matching Bayesian decision makers.

Next, we document a rapid improvement in the decision efficiency of GPTs over a few

generations. Initially, GPT-3.5’s decision efficiency is 12.1% lower than that of humans

in the binary choice Wisconsin experiment and 21.9% lower in the more challenging Holt-

Smith experiment. However, with a few updates, GPT-4’s efficiency quickly reaches a

level comparable to humans, and GPT-4o surpasses human efficiency by 1% and 3.5%

in the respective experiments. We also conducted a limited analysis of the most recently

released version of ChatGPT o1, and found that its efficiency is close to 100%, with

behavior that closely approximates a perfect Bayesian decision maker.3

A key advantage of AI subjects over humans is that AI subjects provide full reasoning

behind their answers, broken down into logical steps. As a result we gain a unique

window into their “thought process” and can better isolate where they make their errors.

Analyzing the textual responses, we find that GPT-3.5 often ignores prior information

and therefore lacks a Bayesian conceptual framework. GPT-4 generally understands that

Bayes Rule is the relevant principle but makes algebraic errors in the process of computing

the Bayesian posterior probability. However, GPT-4o shows remarkable improvement,

transitioning from a “conceptual” to an “accurate” Bayesian approach.

Why should we care how “Bayesian” humans or machines are? Though the decision

problem we study is a simple and somewhat abstract “textbook problem” we believe it is

a reasonable approximation to and metaphor for a range of real world classification prob-

lems involving much higher stakes. One such example is the problem of making optimal

differential diagnoses (DDx) that involve classifying which of several alternative diseases
3So as not to keep the reader in suspense, in figure 1 subject group 1 (blue line) are human subjects and

subject group 2 (red line) are chatGPT 4 subjects.
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or medical problems most likely caused by a set of observed symptoms in a patient. Re-

cent studies (e.g. Goh et al. (2024) and McDuff et al. (2023)) have demonstrated that

LLMs and GPTs can outperform human physicians in the quality and accuracy of their

differential diagnoses. However unlike our problem, there is no objective measure of what

the “correct” diagnosis is for most cases. These studies rely on the diagnoses of panels of

expert physicians to score the choices made by GPT and less experienced interns, and use

ad hoc scoring rules to evaluate the reasoning that lead subjects to choose a particular

diagnosis, but without a clear notion of the cost or harm from a misdiagnosis. In com-

parison, we have an objective way of evaluating loss and classifying “easy” and “hard”

problems to identify where subjects make their most costly mistakes.

Our paper contributes to two strands of literature. First, we build on and extend

the literature of testing whether human behaviors are consistent with Bayes’ rule (El-

Gamal and Grether, 1995; El-Gamal and Grether, 1999; Holt and Smith, 2009). We

formally show that applying Bayes’ Rule is optimal in these experiments and develop a

novel performance measure superior to widely used accuracy. To infer subjects’ posterior

subjective beliefs, we propose a new structural logit model, which we show provides a

better fit of human behaviors than previously ones in the literature.

Second, we contribute to the growing literature understanding LLM behavior using

experimental methods and comparing it with human behavior in a variety of contexts,4

among them Chen et al. (2023) and Mei et al. (2024) are closest to us. Mei et al.

(2024) evaluates the behavioral and personality traits of AI, including trust, fairness,

risk-aversion, altruism, and cooperation and find that “Their behaviors fall within the

distribution of behaviors of humans and exhibit patterns consistent with learning”. Chen

et al. (2023) compares chatGPT and a corresponding sample of human subjects in their

ability to make rational choices in four different domains involving risk, intertemporal

choices, food choices and social choices and concludes that “GPT’s decisions are largely

rational in each domain and demonstrate higher rationality score than those of human

subjects in a parallel experiment and in the literature.” We instead evaluate ChatGPT’s
4The literature finds that LLMs excel at textual tasks, for example, divergent thinking tasks (Hubert et al.,

2024), ophthalmology exams ((Yan et al., 2024); (Taloni et al., 2023)), essay writing (Herbold et al., 2023), and
uniform bar exams (Mart́ınez, 2024). The literature also reports that LLMs can fall short of humans, at least
in certain aspects, in some non-textual tasks, including complex mathematical proofs and computation (Frieder
et al., 2023), analyzing healthcare data (Li et al., 2024), physics coding (Yeadon et al., 2024) and medical board
exams (Katz et al., 2024). For additional studies in marketing and finance, see Goli and Singh, 2024, and Zhao
et al. (2024) and the references there.
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Bayesian rationality—a cornerstone of decision theory with broad applications in do-

mains such as disease diagnosis, pricing strategies, financial investment, and beyond. We

document a rapid improvement in decision efficiency, moving from varied noisy decision-

makers to more uniform, near-Bayesian ones in a few generations. Our estimation of the

structural model and novel analysis of textual responses offer deeper insights into how

this increase in decision efficiency occurs.

The remainder of this paper is organized as follows. Section 2 reviews the relevant

background on statistical decision theory that provides a simple inefficiency index that

we use to summarize the degree of irrationality/suboptimality of both human and AI

subjects relative to the optimal decisions given by Bayes Rules. Section 3 introduces a

structural econometric model of subject responses that we use to infer subject beliefs and

summarize their behavior in these experiments. In section 4 we summarize the findings

of our reanalysis of human subject data reported in the studies by El-Gamal and Grether

(1995), El-Gamal and Grether (1999) and Holt and Smith (2009). In section 5, we use

the same experimental designs but replace the human subjects with AI subjects from

various versions of currently commercially available GPT software, including ChatGPT.

In Section 6, we examine the textual responses of GPT subjects to identify where mistakes

occur in their reasoning process. Section 7 provides some overall conclusions and discuss

the larger significance of our results including revised forecasts of the imminent demise

of homo sapiens.

2 Statistical Decision Theory Background

In this section we review some basic concepts of statistical decision theory that provide

a well defined metric for characterizing the degree of irrationality/inefficiency in the

responses of both human and AI subjects. The human subject data we reanalyze in

section 4 were gathered from four separate experiments: 1) 257 student subjects from

four different universities in California reported in El-Gamal and Grether (1995), 2) 79

student subjects at the University of Wisconsin reported in El-Gamal and Grether (1999),

3) 22 subjects at the University of Virginia, and 4) 24 subjects who participated in web-

based experiments, both reported in Holt and Smith (2009).

All of the experiments analyzed in this paper can be classified as “binomial designs”

7



where subjects are presented with two bingo cages, labeled A and B, each containing the

same known number of balls of two types (i.e. balls labeled N or G in experiments 1

and 2, light and dark marbles in experiment 3, or red and blue balls in experiment 4). A

credible random mechanism was used to select one of the two cages (e.g. selecting one of

the cages based on a toss of a die or a random number generator) though subjects were

not shown which cage was selected. A random sample of D balls with replacement was

drawn from the selected cage and shown to the subjects.

In experiments 1 and 2 subjects were asked to choose the cage they believed was most

likely to have been used to draw the sample. In experiments 3 and 4 subjects were asked

to report the probability that cage A was the one from which the sample was drawn using

an incentive-compatible procedure introduced by Becker et al. (1964) known as the BDM

mechanism which involves a second stage lottery whose payoff depends on the probability

the subject reports. This lottery is designed so that the payoff maximizing report is the

subjective posterior probability of cage A. We will describe the BDM mechanism in more

detail in section 4.3 below. In experiments 1 a subset of subjects were paid a $10 bonus

if they selected the actual cage used to draw the random sample of balls for a randomly

selected trial out of the total trials they participated in. In experiment 2 all subjects

received a $20 bonus for each correct response in 3 randomly selected trials.

It is important to note that in all experiments incentive payments were made after

all trials were completed. Beyond an initial description of the bingo cage setup and a

single demonstration of how it works at the start of the experiment, none of the subjects

received any feedback on whether they had selected the correct cage after each trial in the

experiment. This was evidently an intentional feature of the experimental design, to re-

duce the possibilities of non-stationarity in subjects’ decision rules during the experiment

due to “learning-by-doing” that is enhanced by real-time feedback.5

The problem of selecting the cage from which the observed sample was most likely to

have been drawn is an elementary statistical decision problem whose optimal solution is

given by Bayes Rule. In the next section we summarize the relevant statistical decision

theory that provides the conceptual framework for our comparison of human and AI
5We tested for the presence of learning by doing effects simply due to repeated participation even without

feedback by comparing performance on the first third of trials with the last third. We find small learning by
doing effects even for the non-incentivized subjects, even in the absence of sequential feedback about whether
they had selected the correct cage after each trial. However the effect is sufficiently small that we ignore it in the
subsequent analysis in this paper.
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behavior. Then we introduce a structural logit model of subject decision making that we

use to analyze human and AI responses and compare their degree of suboptimality using

statistical decision theory.

2.1 Bayes Rule, Decision Rules, Win and Loss Functions

First we introduce the notation to more precisely describe these statistical experiments.

Let d denote the number of balls in the sample of D balls that have a designated type

(i.e. balls marked N in experiments 1 and 2, light balls in experiment 3 or red balls in

experiment 4). Though d is a sufficient statistic for the full random sample, subjects

were shown the full sample outcomes.6 Let pA and pB be the probabilities of selecting

the designated type of ball from each cage. The probabilities equal the fractions of the

total number of balls in each cage of the designated type. Let f(d|pA, D) and f(d|pB, D)

be the probabilities of observing d balls of the designated type in the random sample of

D balls for cages A and B. These are binomial distributions with parameters (pA, D) and

(pB, D), respectively. Finally, let π ∈ (0, 1) denote the credible objective prior probability

that cage A was selected to draw the random sample of D balls.

The behavior of subjects in the experiments can be summarized by a decision rule

which is a function δ(d, π, pA, pB, D) mapping the information provided to subjects in the

experiments into a choice of cage A or B. Following El-Gamal and Grether (1995) we

do not assume all subjects use the same decision rule, and our analysis will attempt to

identify different types of subjects who use similar decision rules, using statistical methods

for discovering unobserved heterogeneity including the Estimation-Classification (EC)

algorithm introduced by El-Gamal and Grether (1995) as well as a finite mixture model

approach introduced by Heckman and Singer (1984).

Our analysis of human and AI subject data also allows for probabilistic decision rules

(i.e. “mixed strategies”) as well as pure strategies that appear probabilistic to the ex-

perimenter because the subject’s choice depends on additional information or stochastic

psychological “decision errors” ν that are observed only by the subject and not by the

experimenter. This results in a decision rule of the form δ(d, π, pA, pB, D, ν). For this

reason we define the decision rule for a subject as a conditional probability of selecting
6In experiments 1 to 3 subjects were shown the results of each draw sequentially, but in experiment 4 the

results of the draws were presented simultaneously “to mitigate the tendency of subjects to overweight recent
observations” (p. 129).
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cage A that depends on the public information (d, π, pA, pB, D).

Definition D1. Decision Rule: Any conditional probability P (A|d, π, pA, pB, D) of se-

lecting cage A as a function of the publicly observable information (d, π, pA, pB) as well as

other information or influences ε that are privately observed/experienced by the subject.

If ν has CDF F (ν) that is independent of the public signals, then P has the representation

P (A|d, π, pA, pB, D) = Pr{A = δ(d, π, pA, pB, D, ν)},

=
∫

ε
I{A = δ(d, π, pA, pB, D, ν)}F (ν). (1)

Note that P is also referred to as a conditional choice probability (CCP) and it does

not represent the subjective beliefs about the probability that the sample came from cage

A. In fact a decision rule δ may have no connection to any well defined subjective beliefs.

For example a variety of machine learning algorithms such as support vector machines

or neural networks can be trained to have nearly optimal decision rules but they do not

require or depend on well defined subjective posterior beliefs about A.

However humans, as well as chatGPT, are able to report subjective posterior proba-

bilities. Thus, we would like a model where the decision rule depends, at least implicitly,

on their subjective beliefs. In section 3 we introduce a parametric structural logit model

of subject choices that does explicitly depend on subjective posterior beliefs, and which

in principle can be used to uncover subjective beliefs from observed choices. With suffi-

cient data on subject choices in many trials for different values of (d, π, pA, pB, D), it is

possible to estimate P non-parametrically even in situations where it is not possible to

identify subjective posterior beliefs. As we show, knowledge of P is sufficient for our key

conclusions about the relative efficiency of human vs AI subjects.

Definition D2. Bayes Rule: The conditional probability that cage A was selected given

the information (d, π, pA, pB, D) given by

Π(A|d, π, pA, pB, D) = πf(d|pA, D)
πf(d|pA, D) + (1 − π)f(d|pB, D) . (2)

Bayes Rule is often interpreted as an individual’s subjective posterior beliefs since the

prior belief π is treated as a subjective prior probability that can differ from subject to

subject. However due to the setup of these experiments, π should be interpreted as an
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objective prior probability that cage A is selected, and we assume that this information

has been credibly communicated to subjects. Thus, it follows that the Bayesian posterior

probability Π(A|d, π, pA, pB, D) given in equation (2) is an objective posterior belief i.e.

it is the true conditional probability that cage A is selected given (d, π, pA, pB, D).

Even though some of the subjects were not incentivized via a bonus payment for

selecting the correct cage in a randomly selected trial, it seems reasonable to presume that

both incentivized and non-incentivized subjects were trying to maximize the probability

of selecting the correct cage. In other words, we presume that subjects in the experiment

will want to use an optimal decision rule if it is not too difficult for them to calculate, or

some approximation to it otherwise.

It is convenient to define two binary random variables, W̃P and L̃P , implied by decision

rule P by W̃P = 1 if the subject selects the correct cage from which the sample was

drawn, and 0 otherwise. Thus, W̃P is an indicator for a “win” i.e. a correct prediction

or classification. L̃P is the indicator for a loss, i.e. an incorrect prediction. It follows

that with probability 1 we have 1 = W̃P + L̃P , and so we can define an optimal decision

rule as one that maximizes the probability of a win or conversely one that minimizes the

probability of a loss. Following the standard terminology from the literature on statistical

decision theory, we define

Definition D3. Loss Function The loss function is the conditional probability of a loss,

LP (d, π, pA, pB, D) = E{L̃P |d, π, pA, pB, D}

= P (A|d, π, pA, pB, D)[1 − Π(A|d, π, pA, pB, D)]

+ [1 − P (A|d, π, pA, pB, D)]Π(A|d, π, pA, pB, D). (3)

Definition D4. Win Function The win function is the conditional probability of a win,

i.e. selecting the correct cage,

WP (d, π, pA, pB, D) = E{W̃P |d, π, pA, pB, D} = 1 − LP (d, π, pA, pB, D). (4)

An optimal decision rule P maximizes the probability of a win, or equivalently it

minimizes the probability of a loss. Using equation (3) or (4) the optimal decision rule

is the pure strategy (5) defined in terms of Bayes Rule in Lemma L1.
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Lemma L1. The optimal decision rule for a statistical experiment with a binomial design

can be defined in terms of Bayes Rule by

δ∗(d, π, pA, pB, D) =

 A if Π(A|d, π, pA, pB, D) ≥ 1/2

B otherwise.
(5)

The win function WP conditions on the full information set (d, π, pA, pB, D). Of course,

d varies stochastically over trials for each subject, but the other 4 variables serve as

experimental controls. For example in the California experiments the prior π varied across

trials taking on three possible values, π ∈ {1/3, 1/2, 2/3} but the remaining variables were

fixed at D = 6, pA = 2/3 and pB = 1/2. In the Wisconsin experiments π also varied

over trials but the remaining variables (D, pA, pB) only changed over successive rounds

(groups of trials) taking values (6, 2/3, 1/2) in round 1 and (7, .4, .6) in round 2.

In our comparisons of the performance of human vs AI decision makers, it is convenient

to have a single overall scalar summary measure of decision efficiency which we define as

the ratio of the subject’s expected win probability to the optimal expected win probability

implied by Bayes Rule, where we compute expectations over the empirical distributions

for the values of the experimental controls in the experiments. For example, we can

define a ex ante or unconditional expected loss by first taking expectations over the

unconditional distribution over the realized values of d given (π, pA, pB, D) by

WP (π, pA, pB, D) = E{W̃P |π, pA, pB, D}

=
D∑

d=0
WP (d, π, pA, pB, D)[f(d|pA, D)π + f(d|pB, D)(1 − π)]. (6)

If F (π, pA, pB, D) is the empirical distribution of the experimental control variables in all

trials of the experiment, the overall expected loss for a subject with decision rule P in

this experiment is given by

WP = E{W̃P } =
∫

π

∫
pA

∫
pB

∫
D

WP (π, pA, pB, D)dF (π, pA, pB, D). (7)

We will use WP as a single summary statistic for the overall performance of decision rule

P using our econometric estimates of P from our structural logit model of subject choice

behavior discussed below. Similarly, we can define a single summary statistic for the
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optimal win probability in the same experimental design under the optimal decision rule

implied by Bayes Rule, Wδ∗ . Thus our overall scalar efficiency metric is given by ωP equal

to the ratio of the subject’s expected win probability to the optimal win probability of a

perfect Bayesian decision maker, ωP = WP /Wδ∗ . Clearly we have 0 ≤ ωP ≤ 1.

3 Structural Econometric Model of Subject Responses

This section introduces an econometric model of subject decision making that we refer to

as a structural logit model. It is related to and subsumes as special cases the “probability

weighting” model used by Holt and Smith (2009) to analyze reported posterior and a

“structural probit” model introduced by El-Gamal and Grether (1999). It also includes

the optimal Bayesian decision rule as a special case as well. The structural logit model

also has an interpretation as a two layer neural network where the first input layer uses

“transformed inputs” equal to the log-likelihood ratio and the log posterior odds ratio

and the second output layer uses the subjective posterior probability output from the first

layer as its input and includes it in a logistic “squashing function” that is a monotonic

function of the difference between the subjective posterior and 1/2. A key advantage of

the structural logit model is that it enables us to recover estimates of subjective posterior

beliefs even when subjects only make binary choices of which cage they believe is more

likely to have generated the observed sample d.

We compare the structural logit model to an alternative structural model introduced

by El-Gamal and Grether (1995) that assumes that subjects use cutoff rules to make their

decisions. Their cutoff rule model does not require subjects to have subjective posterior

beliefs, and thus bypasses trying to estimate them. They estimated this model using

data from their California experiment cage A where D = 6 and pA = 2/3 and pB = 1/2.

Since higher realized values for d provide stronger evidence in favor of cage A, a plausible

cutoff rule involves choosing cage A if d > cπ where cπ is a prior-specific threshold. In

their California design there were three possible priors, π ∈ {1/3, 1/2, 2/3} so there are

512 possible cutoff rules (c1/3, c1/2, c2/3) that subjects could use. For example, Bayes Rule

corresponds to the cutoff rule c = (c1/3, c1/2, c2/3) = (4, 3, 2). However the cutoff rule

model is statistically degenerate i.e. for most subjects observed over T successive trials,

none of the cutoff rules will be able to perfectly predict the subject’s choices. To deal with
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this and avoid a “zero likelihood problem” El-Gamal and Grether (1995) introduced an

additional error rate parameter σ ∈ (0, 1) which has the interpretation as the probability

that the subject guesses one of the cages at random rather than using the cutoff rule.

This results in a non-degenerate choice probability (decision rule) given by

P (A|d, π, pA, pB, D) =

 1 − σ
2 if d > cπ

σ
2 otherwise.

(8)

Using the choice probability P (A|d, π, pA, pB, D) in equation (8), El-Gamal and Grether

(1995) were able to write a likelihood function of the sequence of choices made by each

subject in the T trials in the experiment, and use it to estimate the four unknown pa-

rameters of their model, θ = (c1/3, c1/2, c2/3, σ) by maximum likelihood.

Though the model is innovative and interpretable, it has several drawbacks that lead

us to abandon it in favor of the structural logit model we introduce below. First, the

cutoff rule parameters are not “structural” i.e. they are not invariant to changes in

the experimental controls (π, pA, pB, D). For example, the cutoffs cπ are only estimated

for the three possible values of π used in their experiment. Ideally, a structural model

should depend on parameters that are policy invariant and do not change when the

experimental design controlling the “policy” or ”environment” is changed. Second, the

nature of subject errors implied by their model is not entirely plausible: the probability

that a subject randomly guesses, σ, does not depend on the strength of the evidence the

subject observes. For example, for values (d, π, pA, pB, D) we should not expect to see

much guessing in the “easy cases” where the Bayesian posterior probability is close to 0

or 1. Random guesses should be prevalent mostly in ambiguous cases where the Bayesian

posterior is close to 1/2.

We now introduce a structural logit model that avoids these limitations. It implies a

parametric family of stochastic decision rules δ(d, π, pA, pB, D, ν, ε) and stochastic subjec-

tive posterior beliefs Πs(A|d, π, pA, pB, D, ν) that includes the optimal Bayesian decision

rule δ∗(d, π, pA, pB, D) as a special case. The structural logit model depends on 5 unknown

parameters θ = (β0, β1, β3, σ, η) where the first three parameters are allowed to take any

real value and determine the subject’s subjective posterior beliefs. The last parameters η

and σ are restricted to be positive and determine the scaling/level of idiosyncratic “noise”

affecting the subject’s posterior beliefs via ν, and final choice via ε.
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Consider first the subject’s subjective posterior beliefs Πs(A|d, π, pA, pB, D, ν), where

ν is a random variable that reflects stochastic shocks and “calculational errors” that

subjects experience trying to compute their subjective posterior probability. We presume

that subjects attempt to transform their information (d, π, pA, pB, D) into LPR(π) and

LLR(d, pA, pB, D) where LPR(π) is the log posterior odds ratio and LLR(d, pA, pB, D) is

the log-likelihood ratio given by

LPR(π) = log(π/(1 − π))

LLR(d, pA, pB, D) = log(f(d|pA, D)/f(d|pB, D)). (9)

However we also assume that both human and AI subjects can make algebraic errors

trying to evaluate the quantities LPR(π) and LLR(d, pA, pB, D). Let the scalar random

variable ν equal the sum of these errors, so the log-posterior odds ratio that the subject

actually perceives and reports (or makes their choice on), Π(A), is given by

log (Πs(A)/(1 − Πs(A))) = β0 + β1LLR(d, pA, pB, D) + β2LPR(π) + ν. (10)

In our empirical analysis below we assume ν ∼ N(0, η2). Solving equation (10) for

Πs(A|d, π, pA, pB, D, ν) results in the following logistic specification given by

Πs(A|d, π, pA, pB, D, ν) = exp{β0 + β1LLR(d, pA, pB, D) + β2LPR(π) + ν}
1 + exp{β0 + β1LLR(d, pA, pB, D) + β2LPR(π) + ν}

. (11)

Notice that the true Bayesian posterior Π(A|d, π, pA, pB, D) given in equation (2) is a

special case of (11) when β = (0, 1, 1) and ν = 0. For other values of β the subjective

posterior can capture a number of well known biases observed in past studies, including

an outright bias for cage A or B if β0 ̸= 0 as well as overconfidence and underconfidence

about the posterior probability of cage A, base rate bias (β2 < β1) resulting in behavior

consistent with the representativeness heuristic (i.e. excessive weight on the data via LLR

relative to the prior via LPR(π)), as well as conservatism (β2 > β1, i.e. putting excessive

weight on prior information relative to sample information).

Next we model the subject’s binary choice of cage A or B, which we assume depends

on whether their perception of the expected reward from choosing cage A exceeds the

expected reward from choosing cage B. Suppose the subject receives a reward R if they
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select the correct cage and 0 otherwise. In experiments where subjects were not paid for

making a correct choice, R can be viewed as a “psychological reward” the subject expects

from making a correct choice. However we assume that the subject’s expected reward for

choosing either cage can also be affected by unobserved idiosyncratic preference shocks

ε = (ε(A), ε(B)) that we assume are distributed independently of ν. In our empirical

analysis below we assume that ε has a bivariate Type 1 extreme value distribution with

location parameter normalized to 0 and a common scale parameter σ. Normally we would

expect the subject to select cage A if Πs(A|d, π, pA, pB, D, ν) > 1/2 and cage B otherwise.

However we allow the subject’s report to be affected by the additional preference shocks ε

to capture behavior such as simply guessing one of the cages, or some other psychological

factors that may cause a subject to report a cage that may not have the higher posterior

probability. This specification implies the following decision rule for the subject

δ(d, π, pA, pB, D, ν, ε) =

 A if RΠs(A) + σε(A) ≥ RΠs(B) + σε(B)

B otherwise.
(12)

As is well known from the discrete choice literature (see e.g. McFadden (1974)) the

probability that the subject chooses cage A is given by the binomial logit formula

P (A|d, π, pA, pB, D, ν) = Pr{δ(d, π, pA, pB, D, ν, ϵ) = A|d, π, pA, pB, D, ν}

= exp{RΠs(A|d, π, pA, pB, D, ν)/σ}
exp{RΠs(A|d, π, pA, pB, D, ν)/σ} + exp{RΠs(B|d, π, pA, pB, D, ν)/σ}

= 1
1 + exp{R[1 − 2Πs(A|d, π, pA, pB, D, ν)]/σ}

. (13)

It follows that when Πs(A|d, π, pA, pB, D, ν) = 1/2 the subject is indifferent between

choosing cage A or B and the noise terms (ε(A), ε(B)) determine the subject’s choice,

so P (A|d, π, pA, pB, D, ν) is also equal to 1/2. However as Πs(A|d, π, pA, pB, D, ν) ap-

proaches 0 or 1, the “strength of the evidence” reduces the role of the idiosyncratic

shocks ε on the subject’s choice. Thus, P (A|d, π, pA, pB, D, ν) increases to 1 when R is

sufficiently large or σ is sufficiently small and Ps(A|d, π, pA, pB, D, ν) > 1/2, and con-

versely P (A|d, π, pA, pB, D, ν) → 0 when Ps(A|d, π, pA, pB, D, ν) < 1/2 as R/σ → ∞.

Notice that that the structural logit model results in a “mixed strategy” for the choice

of bingo cage due to the effect of the idiosyncratic shocks ε. However as σ → 0 it converges
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to a pure strategy that chooses cage A with probability 1 when Πs(A|d, π, pA, pB, D, ν) >

1/2 and cage B when the subjective posterior is strictly less than 1/2. Further if β =

(0, 1, 1) and η = 0 (so that subjects do not make random errors calculating LPR and

LLR), then their subjective posterior belief coincides with the Bayesian posterior belief

and the structural logit model encompasses the optimal pure strategy Bayesian decision

rule δ∗(A|d, π, pA, pB, D) given in equation (5) as a special case.7

In experiments 1 and 2 subjects only report which cage is more likely, so the unob-

served “calculational error” ν must be integrated out to produce a CCP that can be used

for estimation of the model. When ν ∼ N(0, η2) the CCP is a mixed logit given by

P (A|d, π, pA, pB, D) =
∫ 1

1 + exp{R[1 − 2Πs(A|d, π, pA, pB, D, ην)]/σ}
ϕ(ν) dν, (14)

where ϕ(ν) is the standard normal density.

The structural logit model can also be interpreted as a two layer feedforward neural

network (or 3 layer in the mixed logit case) that uses transformed inputs LPR(π) and

LLR(d, pA, pB, D) and produces a single output: the probability of choosing cage A.

Maximum likelihood of the structural logit model can be interpreted as training the

neural network to behave like a human being. The ability of the structural logit model to

fit a wide range of subject behaviors can be ascribed to the flexibility afforded by using

a parsimoniously parameterized neural network to predict subject behavior.8

Regardless of how it is interpreted, the structural logit implies a CCP that is a func-

tion of the unknown parameter vector θ = (β, η, σ) that can be estimated by maximum

likelihood. We use a panel likelihood function since each subject s in the experiment par-

ticipates in a total of Ts independent trials, so we observe a sequence of binary choices dts

and corresponding controls (πts, Dts) for each subject s over trials t = 1, . . . , Ts assuming
7 El-Gamal and Grether (1999) introduced a three parameter structural probit model which is a decision rule

of the form P (A|d, π, pA, pB , D, β) = Φ(β0 + β1LLR(d, pA, pB , D) + β2LPR(π)) where Φ is the standard normal
CDF. The optimal Bayesian decision rule δ∗(d, π, pA, pB , D) is not nested within this class of models, though it
can be approximated arbitrarily well in the limit when β0 = 0 and β1 = β2 = β > 0 and β → ∞.

8It is not necessary to pre-transform the inputs (d, π, pA, pB , D) into (LPR(π), LLR(d, pA, pB , D)): additional
layers can be added to the neural network so that the inputs to the deeper neural network can entered without
any pre-transformation. Then the initial layers of this deeper neural network can be viewed as producing approx-
imations to the transformed inputs (LPR(π), LLR(d, pA, pB , D)) that then feed into the two layer neural net that
used the transformed inputs to compute a subjective posterior probability and the top layer producing an output
equal to the conditional probability of selecting cage A. These deeper networks require far more parameters,
but do not result in substantially better predictions of subject behavior than our parsimonious 4 parameter two
layer neural network specification. Indeed we can “train” our 4 parameter neural network specification to behave
nearly identically to a perfect Bayesian decision maker using training samples with only a few dozen observations.
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(pA, pB) remain fixed across trials. Let yts be a binary indicator of the choice of subject

s in trial t: yts = 1 if the subject chose A and yts = 0 otherwise. The likelihood L(θ) is

given by

L(θ) =
S∏

s=1

Ts∏
t=1

P (A|dts, πts, pA, pB, Dts, θ)yts [1 − P (A|dts, πts, pA, pB, Dts, θ)]1−yts . (15)

3.1 Identification of Beliefs

Both of the unobserved private shocks ε and ν imply idiosyncratic responses by sub-

jects, so even the same subject can provide two different choices to the same information

(d, π, pA, pB, D). Since these shocks have similar effects on a subject’s choice, it is not

clear whether it is possible separately identify the independent effect of each type of shock

using data from experiments 1 and 2 where subjects provide only binary responses. For

these experiments we estimated two different restricted versions of the mixed structural

logit specification (14): 1) a 3 parameter structural probit that restricts σ = 0 and nor-

malize η = 1, 2) a 4 parameter structural logit model where set η = 0 but estimate the

scale parameter σ of the extreme value distribution of the preference shocks ε.

In experiments 3 and 4 subjects reported their subjective posterior probabilities but

did not make binary choices. So we assume that subjects would select cage A if and

only if their reported subjective posterior probability exceeds 1/2, which is equivalent

to restricting σ = 0. However we estimate the standard deviation parameter η of the

“calculational errors” in their reported subjective posteriors. It is not hard to see from

equation (10) that the belief parameters β and η are parametrically identified given

sufficient subject data and sufficient variation in the experimental controls (π, pA, pB, D)

to avoid multicollinearity in the covariates LLR(d, pA, pB, D) and LPR(π).

Identification of the parameters is more challenging in the case where subjects only

report binary choices of cage A or B, even under the restriction that η = 0. First, we

observe that it is impossible to separately identify the reward R and the error or noise

parameter σ since it is obvious from formula (13) that these parameters only appear

together as a “signal to noise ratio” R/σ in the decision rule which in turn is used to

form the likelihood for the data. Thus, we assume that the reward R from making a

correct decision is known (e.g. it equals the $10 bonus for picking the correct cage) and

we normalize the payoff to R = 1 and estimate only σ subject to this normalization.
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Thus, one must keep in mind that a high value of σ may not necessarily indicate a

high level of random noise affecting the subject’s decision making: it could also indicate

that the subject’s evaluation of the reward from a correct decision, R, is sufficiently low.

In our empirical reanalysis of El-Gamal and Grether (1995) the structural logit model

estimates of σ are lower in the incentivized experiments where subjects received a $10

bonus if they correctly selected the cage in a randomly selected trial than in the “no pay”

experiments. The lower estimated σ may reflect the higher reward and not necessarily

that the scale of the random preference shocks is lower among the incentivized subjects.

An important question is whether the estimated structural logit model provides ac-

curate estimates of subjects’ posterior beliefs, something we do not directly observe in

the El-Gamal and Grether experiments. Ours is an exercise in revealed beliefs where

we attempt to uncover subjective posterior beliefs from observations of subject’s binary

choices. In fact in the case where σ = 0, we already have an identification problem in

that there are a continuum of non-Bayesian posterior beliefs that are consistent with the

optimal Bayesian decision rule δ∗(d, π, pA, pB, D). To see this consider a family of beliefs

indexed by a single parameter λ > 0 given by θλ = (βλ, σ, η) where βλ = (0, λ, λ) and

η = 0 and σ = 0. For any λ and any information (d, π, pA, pB, D) we have

Π(A|d, π, pA, pB, D) ≤ 1/2 ⇐⇒ Πs(A|d, π, pA, pB, D, θλ) ≤ 1/2. (16)

This equivalence implies that the implied decision rule for the subject given in equation

(12) coincides with the optimal Bayesian decision rule δ∗(A|d, π, pA, pB, D) given in equa-

tion (5). Thus, even though the subject’s posterior beliefs are not Bayesian, their decision

rule is still optimal and achieves the same minimal loss as the one defined in terms of

Bayes Rule. However we can show that the subject’s posterior beliefs can be identified

when σ > 0 if the experiment exposes the subject to priors that can be arbitrarily close

to 0 or 1

Lemma L2. Identification of subject beliefs when σ > 0 Assume that η = 0. When

σ > 0, all four parameters of the structural logit model are identified, so the subject’s

subjective beliefs can be identified from knowledge of their decision rule P (A|π, n), where

the latter is identifiable given sufficient experimental data on a subject’s choices.

The proof of Lemma L2 is in Appendix A. Even though Lemma L2 provides a theoret-
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ical justification for the identification of the model when σ > 0, in practice it can be hard

to distinguish the decision rule of a subject with Bayesian posterior beliefs where σ takes

on relatively large values (i.e. a “noisy Bayesian”) from a decision rule of a non-Bayesian

who has a very small value of σ but whose β coefficients are also close to zero.

The weak identification of subjective posterior beliefs is illustrated in figure 2. The

figure plots the CCPs for two very different values of the structural parameters: θ1 =

(0, .8, .8, .2, 0) and θ2 = (0, .008, .008, .002, 0), i.e. θ2 = θ1/100. The left panel plots the

subjective posterior beliefs for these two different “subjects” and we can see that they are

very different, both from each other and from the true Bayesian posterior (the dashed

45 degree line). The right hand panel shows that the implied CCPs are nearly identical.

This example does not contradict our identification result, Lemma L2, because we can

see that P (A|d, π, pA, pB, D, θ1) ̸= P (A|d, π, pA, pB, D, θ2) but the differences are really

only apparent at extreme values such as when π is close to 0 or 1. So even though the

structural logit is “technically identified” as a theoretical matter, but in any practical

sense it is only weakly identified.9

Figure 2: Example of weak identification of subjective posterior beliefs
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9One way to understand the identification problem is to note that the structural probit model of El-Gamal
and Grether (1999) discussed in footnote 7 must be subject to a location scale normalization on its normally
distributed error term. As we discussed above in the structural logit model the extreme value scale parameter σ
only appears as a ratio R/σ where R is the payoff for a correct classification. Even if we normalize R = 1 and
Lemma L2 assures us that the structural logit CCP is not scale invariant in its 4 parameters θ, it is approximately
scale invariant as shown in figure 2. However imposing an arbitrary normalization such as σ = 1 has behavioral
implications, since it determines the probability of incorrect classifications at the extreme values for the prior
probability of choosing cage A, i.e. π = 0 or π = 1. Indeed, our proof of identification used the knowledge of
these classification error probabilities at π = 0 and π = 1 to identify σ. But in actual data sets we may not have
sufficient data at π = 0 or π = 1 and in such cases the identification of σ and the entire parameter vector θ will
be more tenuous.
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As a result, the focus of the empirical work in this section will be on the optimality

of subjects’ decision rules (which are non-parametrically identified) not necessarily on

whether their posterior beliefs are Bayesian. Condition (16) can be viewed as a sufficient

condition for optimality of the decision rule of a non-Bayesian subject and it results in

a test for a weaker form of Bayesian rationality: Ho : β0 = 0 and β1 = β2. If this latter

hypothesis is satisfied, then the subject will still be modeled as behaving as a “noisy

Bayesian” even though their posterior beliefs are not Bayesian. In section 4.3 we return

to the question of inferring subjective posterior beliefs by reanalyzing the experiments of

Holt and Smith (2009) that directly elicited subjects’ beliefs.

3.2 Accounting for Unobserved Subject Heterogeneity

The experimental data we received from El-Gamal and Grether (1995) and El-Gamal

and Grether (1999) do not contain any covariates or observable characteristics of the

subjects in the experiment beyond the particular school (out of 4 in California) where

the experiment was run. They found that students at the more selective schools (e.g.

UCLA) were more likely to be Bayesian and less likely to guess.

However there is undoubtedly additional heterogeneity in the decision rules that sub-

jects are using, including different thought processes (and different subjective posterior

beliefs) that affect their choices. One possible way to account for this additional unob-

served heterogeneity is to use fixed effects where we estimate subject-specific parameter

vectors. However with S subjects observed over T time periods, we have ST total obser-

vations but a total of 4S parameters in the structural logit model. The time dimension

(i.e. number of trials) is rather limited (in the California experiments T ≤ 20). Since both

T and S are relatively small, the incidental parameters problem of Kiefer and Wolfowitz

(1956) suggests that inferences from a fixed effects approach are unreliable.

Instead we use a random effects approach to inferring unobserved subject heterogene-

ity, where following Kiefer and Wolfowitz (1956) we posit a distribution µ(θ) of preference

parameters in the population and attempt to estimate it. Treating µ as an arbitrary ele-

ment of the space of all distributions over θ results in an infinite dimensional “parameter

space” and the estimation problem can be ill-posed unless some restrictions are imposed.

Following Heckman and Singer (1984) we estimate a finite mixture approximation to µ

by maximum likelihood, treating this mixture as a sieve (i.e. an expanding parametric
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family that increases with sample size S and can eventually approximate any µ when S

and the number of mixture components is sufficiently large).

Let K denote the number of unobserved types to be estimated, and θ = (θ1, . . . , θK)

be the 4K × 1 vector of parameters of the “mixed structural logit model” and let λ =

(λ1, . . . , λK) be the corresponding K × 1 vector of population probabilities of each of the

K types. Then the mixed logit likelihood function, L(θ, λ) is given by

L(θ, λ) =
S∏

s=1

K∑
k=1

λkLs(θk), (17)

where Ls(θk) is the likelihood function for subject s evaluated at θk. We estimate a

sequence of such models starting with K = 1 and increasing the number of types K

until a log-likelihood ratio test is unable to reject a model with K types in favor of a

model with K + 1 types, or alternatively, picking the value of K for which the Akaike

Information Criterion (AIC) equals 2(NK − L(θ̂, λ̂)) where NK is the total number of

parameters in the K-type model, is minimized.

We also estimate a closely related random effects approach called the Estimation-

Classification (EC) algorithm by El-Gamal and Grether (1995). This algorithm also

maximizes a likelihood function but instead of computing a mixture over types for each

subject as in equation (17) the EC algorithm assigns each subject in the sample their most

likely type. That is, the EC algorithm is the 4K × 1 vector θ = (θ1, . . . , θK) together with

the S × 1 vector of maximum likelihood subject classifications κ = (k1, . . . , kS) where ks

denotes the most likely type for subject s. That is, we can write the EC estimator (θ̂, κ̂)

as the pair (θ, κ) that maximizes the following likelihood

L(θ, κ) =
S∏

s=1
max

1≤k≤K
Ls(θk), (18)

where Ls(θk) is also the likelihood function for subject s evaluated at θk. The Heckman-

Singer finite mixture estimator can be conceptualized as a “mixed strategy” since it

treats each subject as a mixture over K possible types, whereas the EC estimator can

be regarded as a “pure strategy” since instead of using a mixture over types, it assigns

each subject their most likely type. The EC algorithm results in the following implied
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mixture probabilities,

λ̂k = 1
S

S∑
s=1

I{k̂s = k}, (19)

where k̂s is the type that maximizes the likelihood for subject s. Thus λ̂k is simply the

fraction of subjects whose most likely type is k. Similar to the finite mixture estimator,

we use the same sequential procedure to identify the number of types K by starting

with K = 1 and sequentially increasing K until a likelihood ratio test fails to reject the

hypothesis that a model with K types fits significantly better than a model with K + 1

types. Alternatively we can pick the value of K with the smallest AIC.

4 Optimality and revealed beliefs of human subjects

4.1 Reanalysis of California Experiments

We estimated the El-Gamal and Grether threshold model and the structural logit model

for 221 of the 247 subjects reported in El-Gamal and Grether (1995).10 The results are

shown graphically in figure 3 which compare predicted subject choices for several different

models and subsamples. In both panels, we plot of the fraction of subjects choosing cage

A (y axis) as a function of the true Bayesian posterior probability of cage A (x axis).

The black lines in both panels are the actual fraction of the 221 subjects who chose cage

A in the different trials of the experiment where the values of the “treatment variables”

(π, n) are binned so we can plot results on a two dimensional graph with the Bayesian

posterior probabilities, Π(A|π, n), on the x-axis. Similar to figure 1 the dashed blue line

represents the optimal decision rule of a perfect Bayesian decision maker.

The left panel illustrates the effect of the incentive payments on subject behavior (blue

curve for the no-pay subjects, red for the subjects who were paid) and it is evident that

it has negligible effect on overall behavior.11 The maximum likelihood predictions from

El-Gamal and Grether’s model of subject choice are the green curves in both panels. We

see that this model fails to fit the data well, particularly for the “easy cases”, i.e. (π, n)

values where the Bayesian posterior probability is near 0 or 1. But it also misses near
10Due to a corrupted data file we were unable to include 26 subjects from Pomona Community College under

the incentivized (i.e. for pay) design.
11The average decision efficiency for the 90 subjects in the incentivized trials was 93.5% (std error 0.5%) which

is not significantly higher than the 92.3% efficiency of the 132 subjects in the non-incentivized trials (std error
1.5%). We also separately analyzed data from the first and last third of the trials see if there were any substantial
“learning by doing” or “experience effects” and these were also negligible.
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Figure 3: Comparison of subject behavior and models in the California experiments
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the “‘hard cases” where the true posterior is near 1/2. This pattern of prediction errors

follows from their assumption about subject behavior already discussed, namely that with

probability σ = .38 subjects randomly guess a cage otherwise with probability 1−σ = .62

they follow Bayes Rule. This implies a discontinuous jump in the predicted probability

of selecting cage A right at Π(A|π, n) = 1/2 since at that point the 62% of subjects who

are choosing according to Bayes Rule jump from choosing cage B to choosing cage A.

The right hand panel of figure 3 plots the predictions from the structural logit model

(red curve) as well as several “reduced form” models: 1) a binary logit model with 3

parameters (for a constant, coefficient of π and coefficient of n), and 2) a 5 parameter

two layer neural network that includes an additional bias parameter in the upper output

layer. We can see visually that the structural logit model fits the data significantly better

than the El-Gamal and Grether model even though both models have 4 parameters. The

El-Gamal and Grether model restricts 3 of the parameters, the cutoffs cπ, to a finite

grid of integers, which allows far less flexibility in fitting the data compared to the 4

continuous parameters of the structural logit. The structural logit also outperforms the

3 parameter reduced form logit (which can be regarded as a single layer feedforward

neural network), but produces approximately the same predictions as a 5 parameter

neural network specification. The structural logit model can be viewed as a restricted 4

parameter version of the 5 parameter neural network where the bias term in the output

layer is restricted to be -1/2 times the value of the input weight parameter, which is 1/σ in

the notation of the structural logit model. Intuitively, the structural logit model imposes
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a harmless restriction that subjects compare their subjective posterior Πs(A|π, n) to the

value 1/2 as the threshold for choosing cage A, and in particular, the restriction implies

that subjects are equally likely to choose cage A or B when Πs(A|π, n) = 1/2.

Table 1: Log-likelihood values for alternative models of subject choices

Model Number of parameters Log-likelihood AIC
El-Gamal/Grether discrete cutoff rule 4 -1952 3912
Structural probit 3 -1847 3700
Reduced-form logit 3 -1821 3648
Noisy Bayesian 1 -1801 3604
Structural logit 4 -1773 3554
Neural network 5 -1772 3554

Table 1 summarizes the fit of the various models of subject behavior. The final column

of the table reports the Akaike Information Criterion (AIC) used for model selection and

defined as 2(k − LL) where k is the number of parameters in the model and LL is the

maximized value of the log-likelihood function for that model. Though the 4 parameter

El-Gamal and Grether model is not nested as a special case of the 4 parameter structural

logit model, using the non-nested likelihood-based specification test of Vuong (1989) we

can strongly reject the El-Gamal and Grether model in favor of the structural logit model

(P-value 2.5 × 10−4). Similarly, we can strongly reject the 3 parameter structural probit

(see footnote 7) and the 3 parameter reduced form logit model as well (P-values 1.1×10−6

and 2 × 10−5 respectively). The noisy Bayesian model is a restricted 1 parameter version

of the structural logit model where we allow σ to be freely estimated and restrict β

to impose Bayesian beliefs, i.e. (β0, β1, β2) = (0, 1, 1). A likelihood ratio test strongly

rejects the hypothesis that subjects are “noisy Bayesians” (P-value 9.2 × 10−12). The

structural logit model is a restricted version of the 5 parameter neural network model

and a likelihood ratio test fails to reject the implicit upper-level restriction on the bias

term discussed above. (P-value .115). Overall, the structural logit model achieves the

lowest value of the AIC (the same as the 5 parameter neural network model) and it

is another compelling reason why we use it as the preferred model for our subsequent

analysis.

Table 2 presents the maximum likelihood coefficient estimates for the structural logit

and probit models. Since the coefficient on LLR(d, pA, pB, D), β1, is significantly greater
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Table 2: Maximum likelihood estimates of the structural logit/probit model parameters

Structural logit model
Parameter σ η β0 β1 β2
Estimate .38 0 .05 2.38 1.86
Standard error (.02) (0) (.05) (.28) (.19)

Structural probit model
Parameter σ η β0 β1 β2
Estimate 0 1 .03 1.05 .97
Standard error (0) (0) (.02) (.04) (.04)

than the coefficient on LPR(π), β2, the estimation results suggest the typical subject in

El-Gamal and Grether’s California experiments display the representativeness heuristic,

contrary to their finding using their cutoff rule model that the single best model to predict

subject behavior is the “noisy Bayesian” model. On the other hand, structural probit

model results support the hypothesis that the single best model is the noisy Bayesian

model. Neither a Wald test nor a Likelihood ratio test rejects the hypothesis that β∗ =

(0, 1, 1), the values that imply subjective beliefs Πs(A|d, π, pA, pB, D, ν) in equation (11)

(P -value of likelihood ratio test, .13). However the results in table 1 show that the data

reject the structural probit specification in favor of the structural logit model. We can

see why this is visually in the right hand panel of figure 3 where the blue line for the 3

parameter reduced-form logit (which fits better than the 3 parameter structural probit

but results in a similar CCP) predicts that subjects make no classification errors when the

evidence (as captured by the Bayesian posterior) is close to 0 or 1. In actuality, subjects

do make significant classification errors at these extremes, and this is why σ > 0 in the

structural logit model and it is able to fit the data significantly better.

Now we show how our conclusions change when we allow for unobserved heterogeneity

in subjects’ beliefs and behavior. We estimated multiple type models using both the EC

algorithm and the finite mixture of types (hereafter abbreviated as FM) method described

in section 3.2. We found that AIC is smaller for a specification with K = 3 unobserved

types compared to K = 2 types or the single type specification presented in table 2.

Rather than presenting the coefficient estimates, we illustrate the predictions and key

findings in a series of graphs below.

Figure 4 compares the types identified by EC and FM in terms of the revealed posterior

beliefs. The methods result in different inferences about the proportions of the three types
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Figure 4: Inferred Posterior beliefs of California subjects from EC and FM algorithms
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as well as their beliefs. The left hand panel shows results from EC algorithm. Type 1

subjects (48.6% of the sample) have a virtually flat posterior. This is due to very small

estimates of β and σ, echoing the example we discussed in section 3.1 and the beliefs are

similar to those plotted in the example of weak identification of beliefs in figure 2. Type

3 subjects (32% of the sample) have beliefs that are virtually identical to the Bayesian

posterior (with the two lines appearing as a single solid green line in the figure) and

type 2 subjects (19% of the sample) have beliefs consistent with conservatism since the

coefficient β1 on LLR is significantly lower than β2, the coefficient of LPR. Their beliefs,

plotted by the blue line in the left panel of figure 4, display overconfidence, i.e. they

believe cage A is less likely than the true (Bayesian) posterior when the true posterior is

less than 1/2, and more likely otherwise.

Though the posterior beliefs of the type 3 subjects are closest to Bayesian posterior

beliefs, the degree of idiosyncratic decision noise for these subjects is far higher than

for type 1 subjects whose subjective posterior seems nearly flat but is actually strictly

increasing as a function of the true posterior. For this reason, we will see below that

in terms of decision efficiency, the type 1 subjects are the “most Bayesian” of the three

types. That is, both type 1 and 3 subjects are “noisy Bayesians” but type 3 subjects have

substantially more noise in their responses with an estimated σ of σ̂ = .3 for type 3 and

σ̂ = 1.9 × 10−6 for the type 1 subjects.

The right panel of figure 4 plots the inferred beliefs from the FM approach. The

results appear rather different than those from the EC algorithm: the Type 1 subjects
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(50.6% of the sample) conform to the representativeness heuristic, since the estimated

coefficient on LLR is approximately twice as large as the coefficient of LPR. The other

two types identified by the FM method can be classified as “noisy Bayesians” since the

coefficients on LLR and LPR are not significantly different from each other. However

type 2 subjects are substantially noisier than type 3 subjects: the estimated σ for the

former is .75 compared to only .16 for the latter. Thus, we will designate the type 3

subjects as the “most Bayesian” type discovered by the finite mixture method. Overall

the optimized likelihood from the FM approach, −1655 is considerably below the value

yielded by EC algorithm, −1543, reflecting the advantage of EC as a “pure strategy” for

identifying types compared to FM which is akin to using a “mixed strategy”. Despite these

differences, we show that both methods provide similar overall results and conclusions.

Figure 5: CCPs implied by EC and FM models of California subjects
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3 type mixture estimation results

Figure 5 compares the overall CCPs (for all subjects, not broken down by type),

plotted for each of the three priors used and for all observed outcomes for d. We see that

EC and FM give very similar overall fits to the data.

Figure 6 plots the classification thresholds for each type of subject. These are hyper-

planes of the form β̂0,k + β̂1,kLLR+ β̂2,kLPR = 0 for each type k ∈ {1, 2, 3} where cages A

and B are subjectively equally likely. We also plot the classification threshold for Bayes

Rule, the black line with a slope of −1. Even though figure 4 creates an impression that

EC and FM approaches lead to different conclusions about the proportions of subjects

with different subjective posterior beliefs, figure 6 shows that the implied classification

thresholds are quite similar. In particular the subjects whose beliefs are consistent with
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Figure 6: Classification thresholds implied by EC and FM models of California subjects
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Representativeness are the ones with the steeper classification threshold in each graph

and these are the Type 1 subjects that are estimated to be about 50% of the subject pool

by both methods. The main difference is that the type 3 subjects identified by the EC

method have a classification threshold that is virtually identical to Bayes Rule, whereas

there is a clearer difference for the type 3 subjects identified by the FM method.

Figure 7: Accuracy and efficiency of California subjects implied by EC and FM algorithms
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Figure 7 plots subject-specific accuracy and efficiency scores as well as the posterior

probability that the subject is the “Bayesian type” implied by each subject’s choices and

the estimated structural logit model, as estimated using the EC and finite mixture meth-

ods, respectively. The accuracy score is simply the fraction of each subject’s choices that

coincide with the choices of perfect Bayesian decision maker. The efficiency score is the

sum of expected wins in the Ts trials each subject s participated in to the corresponding
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wins for a perfect Bayesian, i.e. the ratio ωs given by

ωs =
∑Ts

t=1

[
Π(A|dts, πts)yts + [1 − Π(A|dts, πts)](1−yts)

]
∑Ts

t=1

[
Π(A|dts, πts)y∗

ts + [1 − Π(A|dts, πts)](1−y∗
ts)
] . (20)

where dts and πts are the trial outcomes and priors, respectively, and yts is an indicator

for subject s’s choice of cage A in trial t, and y∗
ts is the choice a perfect Bayesian would

make in the same trial.

The red dots in each figure are the posterior probabilities implied by the structural

logit model that each of the 222 subjects is the “most Bayesian type” (i.e. type 1 for the

EC algorithm and type 3 for the finite mixture model). Since the EC algorithm classifies

each subject to be the most likely type, these posterior probabilities are either 0 or 1

depending on whether the most likely type of subject s is type 1. In the case of the

finite mixture method, we can use the estimated probabilities of each type as a “prior

probability” of that type and use the subject-specific likelihood to compute a posterior

probability for each type τ ∈ {1, 2, 3}, denotes by Π(τ |ys, ds, πs) and given by

Π(τ |ys, ds, πs, θ̂) = P̂ (τ)L(ys, ds, πs|τ, θ̂)∑3
k=1 P̂ (k)L(ys, ds, πs|k, θ̂)

. (21)

where ys is the sequence of choices by subject s in the Ts trials, and ds and πs are the

corresponding outcomes and priors for these trials, and P̂ (k) is the estimated fraction of

type k subjects, and L(ys, ds, πs|k, θ̂) is the subject-specific likelihood for subject s at the

estimated parameter values θ̂ assuming the subject is type k.

The right hand panel of figure 7 plots the posterior probabilities, for each subject, that

they are the “most Bayesian type” (type 3 per the discussion above). Of course these

posterior probabilities are not all zero or one for the finite mixture estimator. To enable

better comparison the red line in both panels plots the local average probability that the

subject is the most Bayesian type and we can see that this probability is monotonically

increasing in the fraction correct responses (accuracy) and is also strongly positively

correlated with subject-specific decision efficiency, though variation across subjects in

efficiency is not as great as the variation in accuracy. This is a reflection of the observation

we made in the introduction that a subject with lower accuracy need not have significantly

lower efficiency if the trials where their choices deviate from Bayes Rule are mostly the
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“hard cases” where the Bayesian posterior is close to 1/2.

Figure 8 plots the loss functions for the three types of subjects implied by the EC and

FM models as a function of the prior π. We see that again the implied loss functions

are similar, though the estimated standard error bands are larger for the loss functions

estimated by FM, especially for the type 2 subjects (blue line, the noisier subset of

noisy Bayesians). The EC method predicts that the type 1 subjects have the lowest loss

function, whereas the FM method predicts that the type 3 subjects have the lowest loss.

Figure 8: Loss functions implied by EC and FM models of California experiments

We calculated expected win probabilities using the empirical distribution of π for all

three types. For these experiments a Bayesian would, on average, predict the correct cage

with probability 70%. According to the EC algorithm type 1 subjects predict the correct

cage with an average probability of 68%, so the estimated average decision efficiency

score is ωp = 97.5% (standard error, 0.7%). The FM algorithm predicts that the less

noisy Bayesians (Type 3 subjects) are the most efficient decision makers, with a decision

efficiency score of 94.7% (1.5%). Both the EC and FM algorithms predict that the least

efficient decision makers are the type 2 subjects with decision efficiencies of 87% and

82%, respectively. Overall, for all three types of California subjects, both the EC and

FM algorithms predict a decision efficiency score of 93% with estimated standard errors

of 0.7% and 1.2%, respectively. Wald tests strongly reject the hypothesis that subjects

are fully efficient decision makers either individually for each type or overall as a group.
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4.2 Reanalysis of Wisconsin Experiments

Now we reanalyze data from the “Wisconsin experiments” conducted by El-Gamal and

Grether (1999). They recruited 79 student subjects from the University of Wisconsin-

Madison and employed a two stage experimental design to test for context effects by

altering the “California design” used in El-Gamal and Grether (1995) (where D = 6 and

pA = 2/3 and pB = 1/2) to a new “Wisconsin design” (D = 7, pA = .4 and pB = .6).

The experiments were conducted on two successive days. On the first day approximately

half the subjects began with the 6 ball California design and then switched to the 7 ball

Wisconsin design on the second day, whereas for the other half of subjects this order was

reversed to see if the ordering of the designs affects subjects’ choices.

The motivation for this design is twofold: 1) by drawing an odd number of balls, they

made it harder for subjects to rely on the “representativeness heuristic” in their choice

of cage A or B, and 2) by reversing the proportions of balls marked N they reversed the

classification rules. That is, in the 7 ball Wisconsin design larger values of d constitute

stronger evidence for cage B, not cage A as was the case in the California design. These

design changes could potentially change subject behavior, whereas they have no effect on

the optimal Bayesian decision rule which is a function of LLR(d, pA, pB, D) and LPR(π).

In fact, the structural logit model predicts that the design change is fully accounted for

in the likelihood ratio term entering Bayes Rule. It follows that even if the subject is

not Bayesian (e.g. the β coefficients do not equal the values β = (0, 1, 1)), as long as the

structural coefficients are unaffected by the change in experimental design, then so is the

implied behavior of these subjects.

From our perspective, the Wisconsin experiments provide an opportunity to treat the

switch from the 6 ball California design to the 7 ball Wisconsin design as a policy change

to study how well the structural logit model is able to predict subjects’ choices under

a different experimental design (data generating mechanism). To do this we estimate

a multi-type version of the structural logit model for all 79 subjects using the 6 ball

California design trials as the training sample and use the 7 ball Wisconsin design trials

as the evaluation sample. This approach also allows us to conduct a likelihood ratio test

for structural stability, i.e. to test whether the coefficients of the structural logit model

are invariant across the two experimental designs. As we noted in the introduction, El-
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Gamal and Grether (1999) concluded (using their structural probit model) that subjects

did appear to use different decision rules in the 6 ball and 7 ball designs. Evidently not

being able to rely as easily on the representativeness heuristic lead a greater fraction of

subjects to use decision rules that more closely approximate a noisy version of Bayes rule

in the 7 ball trials.

Figure 9 summarizes the data on subject choices in the 6 and 7 ball trials. The size

of each circle is proportional to the number of observations and the color of the circles

represents the share of subjects choosing cage A or B. Thus, deep blue circles are those

where nearly all of the subjects chose cage B, deep red circles are those where nearly all

the subjects chose cage A, and the purple colored circles are those where there was a mix

of subjects choosing cage A and B, where we mixed red and blue in proportion to the

fraction of subjects choosing A and B.

Figure 9: Data and classification thresholds in the Wisconsin experiments
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We plot the cutoffs implied by Bayes Rule as a function of the prior probability π

to make it easier to assess whether subjects’ responses are consistent with the optimal

decision rule: at points on one side of the cutoff line cage A is optimal and on the other

side cage B is the optimal choice. We see how the change in experimental design changed

the threshold from downward sloping in π in the 6 ball design to upward sloping in the 7

ball design. It is evident that choices are on average consistent with Bayes Rule. Subjects

become “confused” (indicated by purple circles) for trial outcomes near the classification

threshold or “indifference curve.” The circles further away from it are colored deep red

or blue, so these are the easy cases where subject choices largely accord with Bayes Rule.
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It seems there is less confusion in the 7 ball design but this may be an artifact of fewer

observations laying on near the classification threshold compared to the 6 ball design.

Table 3 presents the maximum likelihood estimates from the FM algorithm for the 4

parameter specification of the structural logit model where η = 0.12 We stopped the FM

algorithm when it reached K = 3 types even though the likelihood ratio test indicated

that K = 4 types is a significantly better fit because with only 79 subjects, there would

be too few subjects assigned to some of the types in the 4 type specification, raising the

possibility of model overfitting and less reliable inferences.

Table 3: FM estimates of the structural logit model for 6 ball experiments, LL = −654.25

Parameter (std error) Type 1 (λ̂1 = .32) Type 2 (λ̂2 = .24) Type 3 (λ̂3 = .44)
σ (noise parameter) .07 .22 .32

(.08) (.06) (.05)
β0 (bias/intercept) .14 .06 -.11

(.18) (.11) (.08)
β1 (LLR(n) coefficient) 1.48 1.25 2.48

(1.91) (.36) (.67)
β2 (LPR(π) coefficient) 1.40 2.27 1.39

(1.81) (.70) (.36)
P -value for Ho : β0 = 0, β1 = β2 .74 .02 .01
P -value for Ho : β0 = 0, β1 = β2 = 1 .015 .003 .015

Of the three types, type 1 is the most “Bayesian” and also the least “noisy”. The

estimated noise parameter σ is less than a third of the value estimated for the other

two types. There is no significant overall bias in the beliefs of any of the three types as

evidenced by the fact that all three estimates of the bias term β0 in subjective posterior

beliefs in equation (11) is insignificantly different from zero. The next to the last row in

the table presents the P values of a Wald hypothesis test that β0 = 0 and β1 = β2, and we

see that there is no evidence against this for type 1 subjects but the hypothesis is rejected

for type 2 and type 3 subjects. The type 2 subjects are those whose beliefs are consistent

with the Representativeness heuristic, i.e. they put less weight on the prior information

via LPR relative to the sample information via LLR. The type 3 “conservative subjects”

do the opposite.

The last row of the table shows that we can strongly reject the hypothesis that any

of the three types are “noisy Bayesians” i.e. who satisfy the hypothesis Ho : β0 = 0, β1 =
12Estimation results from the EC algorithm result in similar overall conclusions.
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1, β2 = 1, though with possible noise affecting their choices, σ > 0. However because the

type 1 subjects satisfy the restriction that β0 = 0 and β1 = β2, their implied decision rule

is nearly optimal, as we show below. So at least in terms of their decision rule or choice

behavior the type 1 subjects are close to optimal even if their subjective posterior beliefs

may be a distorted version of true Bayesian beliefs.

Figure 10: Subjective vs Bayesian Posterior Beliefs, 6 ball experiments
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Figure 10 plots the estimated subjective posterior beliefs for the three types of subjects

(dotted lines) and compares them to the true Bayesian beliefs (solid lines) for all possible

combinations (π, d) where π ∈ [0, 1] and d ∈ {0, 1, . . . , 6}. It is visually apparent that the

subjective posterior beliefs of the Type 1 subjects are closest to Bayesian, whereas there

are obvious distortions in the estimated posterior beliefs of the Type 2 and 3 subjects.

Type 2 subjects display a pattern of overconfidence overestimating the probability of

A relative to Bayes Rule for sufficiently high values of π and under-estimating it for

sufficiently low values of π. Type 3 subjects display a different type of overconfidence.

For high values of d (d ∈ {0, 1, 2, 3}) these subjects’ subjective beliefs systematically

under-estimate the probability of A relative to Bayes Rule for all values of π, but for

high values of d (d ∈ {5, 6}) this reverses and they systematically over-estimate the

probability of A relative to Bayes Rule, for all π ∈ [0, 1].

The distortions in subjective posterior beliefs imply suboptimal choices even in the

absence of “noise” in their ultimate decisions. If σ were zero, the optimal decision rule

can be described by a cutoff rule π(d) that differs for each realized value of d. These

cutoffs occur at the intersections of the solid or dashed curves and a horizontal line at

a probability value of 1/2. It is optimal for the subject who observes information (π, d)

to choose cage B if π < π(d) and cage A if π ≥ π(d). From this it is evident that the

Type 1 subjects have the least distortion in the implied optimal (noise-free) decision rules,

whereas the Type 3 subjects have the most distorted decision rule. We show below that
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this implies a significantly higher loss for type 3 subjects relative to type 1 subjects.

Before showing this, we present figure 11. The blue curve in this figure plots the frac-

tion of “correct” responses for each of the 79 subjects, i.e. the fraction of their responses

that coincide with the optimal choice of a Bayesian decision maker given the same in-

formation (πt, dt) in each trial t. We see that the fraction of correct responses ranges

from a low of 54% to a high of 100% with an average of over 81% correct responses. The

black and red curves help relate this simpler “percent correct” metric of performance to

Bayesian behavior. The black curve plots subject-specific decision efficiencies, i.e. the

ratio of the sum of each subject’s expected win probabilities in all trials to the corre-

sponding total for a perfect Bayesian decision maker. We see that average efficiency is

quite high, 96.5%, which exceeds the average of 81.9% correct responses of these subjects.

This is due to the fact that most of the “mistakes” that these subjects made were on the

hard cases where the true posterior probability was close to 1/2, and thus, mistakes for

these cases are not very costly for these subjects.

Figure 11: Fraction of Correct Responses
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The red curve in figure 11 plots the posterior probability (implied by the FM esti-

mates) that each subject is a type 1 “noisy Bayesian” and the solid red curve is a local

linear regression showing the local average fraction of noisy Bayesians ordered by per-

cent correctly answered. We see a strong positive relation between “correctness” and the

probability of being a Type 1 subject, ranging from a low of 0% for subjects who only

answered 54% of the trials correctly to a high of 70% for subjects who answered 100%
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correctly.13

Figure 12 plots the classification thresholds (hyperplanes) for each of the three types

of subjects along with the prior-specific expected loss functions LP (π), see equation (3).

Recall that along these lines the subject believes cages A and B are equally likely, so they

each demarcate the decision regions each type of subject would make their classification

decisions in the absence of noise (i.e. when σ = 0). Here it is obvious that the decision

hyperplane of the Type 1 subjects essentially coincides with the Bayesian classification

threshold, but the hyperplane for the Type 2 subjects is significantly less steep and the

hyperplane for the Type 3 subjects is significantly more steep than the classification

hyperplane of a Bayesian. This allows us to readily assess the regions where subjects

will make classification errors relative to what an optimal Bayesian decision maker would

choose. For example in the triangular region to the left of LPR(π) = 0 below the red

and black lines and above the blue line, for values of (LLR, LPR) in this region a type

2 subject chooses cage A but a Bayesian (or type 1 subject) chooses cage B. Similarly

the triangular region below the green line and above the red and black lines to the left

of LPR(π) = 0, represents misclassifications by Type 3 subjects: they choose cage B

whereas a Bayesian (or type 1 subject) chooses cage A.

Figure 12: Classification Thresholds and Expected Loss Functions, 6 ball experiments
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13Of course, it is possible to get 100% due to unobservable random factors affecting subjects’ responses and
this is why the posterior probability of subjects who answered 100% correctly is not 1. In fact, the posterior
probability of being a Type 1 subject can be rather low even if the subject answered 100% correctly depending on
the particular sequence of trial values {(πt, dt)} the subject is asked to classify. If most of these trials correspond
to the hard cases true posterior values close to 1/2, i.e. Π(A|πt, dt) ≃ 1/2, then it is harder to distinguish whether
the subject is a noisy Bayesian or some other type. This is reflected in a higher posterior probability that the
subject could have been a type 2 or 3 subject.
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The right hand panel of figure (12) plots the expected conditional loss functions LP (π)

for the three types of subjects. The black curve plots the optimal Bayesian loss function

Lδ∗(π) that necessarily minorizes the loss functions for the human subjects by Lemma L1.

We see that the red expected loss curve for the type 1 subjects nearly coincides with

the black Bayesian loss function, indicating that the Type 1 subjects are nearly optimal

Bayesian decision makers, even if their subjective posterior beliefs are somewhat distorted

relative to Bayes Rule. However the green and blue curves are significantly higher than

the black and red expected loss curves, showing that the Type 2 and 3 subjects are using

distinctly suboptimal decision rules.

The most suboptimal decision makers are the type 3 subjects whose LP (π) loss func-

tion majorizes the other three expected loss functions. Note that the other loss functions

are close to zero at values of π equal to 0 or 1, whereas the green curve is significantly

positive at those values similar to what we found for the poorest performing types of

California subjects. This is a reflection of the high amount of “decision noise” σ for the

type 3 subjects that we noted in our discussion of the estimation results in table 3. For

example the model predicts that a type 3 subject will choose cage A about 5% of the

time even when π = 0 when there is no chance that cage A was used to draw the sample,

and conversely for values of π near 1.

We also calculated expected win probabilities using the empirical distribution of π for

all three types. The EC algorithm predicts that the type 1 (less noisy Bayesians) have a

decision efficiency score of 99.5% (standard error 0.2%), whereas type 2 (Conservative)

subjects have a decision efficiency of 96.2% (standard error 0.9%), and type 3 (Repre-

sentativeness) subjects have an efficiency index of 94.5% (0.1%). While we can strongly

reject the hypothesis that any of the three types is a fully optimal decision maker, the

overall efficiency of the Wisconsin subjects is quite high, 96.5% (0.5%) which is higher

than the 93% overall efficiency score for the California subjects.14

Finally, we consider how well the structural model can predict a “policy change” i.e. a

change in the experimental design from the 6 ball California design to the 7 ball Wiscon-

sin design. We illustrate this in figure 13. The left panel of the figure shows the in-sample

fit, i.e. it compares the predicted CCPs from the structural model to the non-parametric

estimates of the CCPs for subjects in the 6 ball “training sample”. Note that we incorpo-
14Overall efficiency of the Wisconsin subjects in the 7 ball design was 95.5% (0.6%).
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rated the subject-specific unobserved heterogeneity in the model-predicted CCPs in this

figure: that is, we computed the structural logit CCPs by averaging the subject-specific

CCPs where each subject was assigned their most likely type from the output of the

EC estimation algorithm. We plot separate lines for the 4 separate priors used in these

experiments, π ∈ {.3, .4, .6, .7} where the dashed lines plot the non-parametric CCPs as

a function of n and the solid lines are the predictions of the structural logit model.

Figure 13: Predicted vs Actual CCPs in Training and Evaluation Samples
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The right hand panel illustrates the ability of the structural logit model to predict

how subject behavior changes in the D = 7 ball evaluation sample. The 4 curves are now

downward sloping in d and of course this is due to a change in binomial parameters from

(pA, pB) = (2/3, 1/2) in the California design to (pA, pB) = (.4, .6) under the Wisconsin

design. We see that the structural logit model provides fairly accurate predictions of the

dramatic shift in subjects’ decision rules under the two experimental designs, suggesting

that the structural logit model provides a good approximation to subject behavior.

However there is a more subtle aspect in which subjects’ decision rules might have

changed that constitutes evidence against the “structural stability” of the structural logit

model. That is, if the structural logit model was a completely correct model of subject

behavior, then if we were to estimate the parameters of the structural logit model using

the 7 ball evaluation sample, the structural parameters θ should not be statistically sig-

nificantly different from the parameters estimated in the 6 ball training sample. However

we find that when we do use the 7 ball experiments as the estimation or training sample,

there is a significant change in the structural parameter estimates: a smaller fraction,
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23%, of subjects are classified as “noisy Bayesians”. The noisy Bayesians also exhibit

significantly greater noise in their responses compared to the type 1 subjects identified

using the 6 ball training sample, with σ̂ = .43. Further, we find that type 1 and 3 subjects

have relatively low inefficiency but type 2 subjects exhibit high inefficiency due to the

large values of σ noted above. In the 7 ball data, we find that the inefficient, high noise

subjects constitute 23% of the sample, whereas the other 77% of subjects have higher

efficiency due to lower estimated values of σ.

Overall the fraction of subjects using “efficient” decision rules increased from 32% in

the 6 ball training sample to 77% when we use the 7 ball experiments as the training

sample. A likelihood ratio test strongly rejects the hypothesis that subjects were using

the same decision rules in both the 6 ball and 7 ball experimental designs: P-value

.002.15 However the average inefficiency of all Wisconsin student subjects under the 7 ball

design is 10.7% (standard error, 1.4%), which is significantly larger than the 8.1% average

inefficiency of all subjects for the 6 ball design. Apparently the switch to the 7 ball design

reduced the ability of subjects to rely on the representativeness heuristic. This may have

induced more subjects to expend more mental effort resulting in more efficient decision

rules. Despite this, the 23% of the sample who continued to use the representativeness

heuristic also had significant noise affecting their responses, so the significantly higher

inefficiency among this group outweighed the improvement in efficiency among the other

subjects, causing overall inefficiency to increase in the 7 ball Wisconsin design.

4.3 Reanalysis of Holt and Smith Experiments

The identification problem for subjective beliefs using only binary choice data discussed

in section 3.1 suggests the need for caution in drawing conclusions about the fraction of

subjects who have subjective posterior beliefs that are well approximated by Bayes Rule,

though we can be confident our inferences on overall inefficiency of human subjects since

this measure is based on the CCP which is non-parametrically identified.

In this section we reanalyze experiments reported in Holt and Smith (2009) that
15When we estimated the 3 type structural model via the FM method using the 221 California subjects we

obtained roughly similar results as we obtained for the Wisconsin subjects when we estimated their parameters
for the same 6 ball California design. We found that 21% of the California subjects were “noisy Bayesians”, 50%
overweight LLR and hence show behavior consistent with the representativeness heuristics, and 29% overweight
LPR and hence exhibit behavior consistent with conservatism. However the estimated σ parameter for the noisy
Bayesians was σ = .74 and this high level of noise made these subjects the most suboptimally behaving subgroup
among the California subjects.
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directly elicited subjective posterior beliefs. This was done via the Becker-DeGroot-

Marshak (BDM) mechanism which incentivizes rational subjects to truthfully report their

subjective posterior probabilities. They conducted two separate experiments: one at

Holt’s laboratory at the University of Virginia involving 22 subjects, and a second one

done via the Internet involving 30 subjects. In both experiments the design parameters

involved fixing pA = 2/3 and pB = 1/3 but varying the number of draws D and the priors

across multiple trials for each subject. D took values from {0, 1, 2, 3, 4} and π varied from

{1/3, 1/2, 2/3}. Here we focus on the reanalysis of the first experiment with 22 subjects

and, given space constraints, summarize the key findings from our analysis of their second

web-based experiment in a footnote.

The BDM mechanism was implemented as follows: after seeing the prior π and the

result of the random drawing d from the selected cage/cup, subjects were asked to report

a probability pr ∈ [0, 1] that determines a payoff they would receive in a second stage

gamble. This gamble, denoted by G̃R, involves drawing a random probability p̃ ∼ U(0, 1)

and paying the subject a monetary reward of R according to the following rule: if p̃ < pr

the subject receives R if the observed sample was drawn from cup A, otherwise if p̃ ≥ pr

the subject receives R with probability p̃. It is not hard to show that the subject’s

expected payoff from reporting pr in this second stage BDM lottery is

E{G̃R|pr, d, π, pA, pB, D} = R

[
1 − p2

r

2 + prΠs(A|d, π, pA, pB, D)
]

, (22)

where Πs(A|d, π, pA, pB, D) is the subjective posterior probability that the sample was

drawn from cup A given the information (d, π, pA, pB, D). Further, it is easy to see that

the report pr that maximizes expected payoff is p∗
r = Π(A|d, π, pA, pB, D).

Note that the BDM mechanism incentivizes truthful reporting but not necessarily cor-

rectness of subject reports. The latter depends on their capability as “intuitive Bayesians”

and their ability to do internal mental calculations (i.e. the extent to which they do “fuzzy

math”). A drawback of the BDM mechanism is that it can be confusing to subjects and

potentially harder for them to determine the optimal report pr than to determine the

posterior probability of cup A. Holt (2019) notes that “The use of incentivized elicitation

procedures is the norm in research experiments, but there are some problems.” One of

the problems is that BDM relies heavily on the presumption of rationality of the human
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subjects, including being able to calculate the expected payoff in equation (22) as a func-

tion of pr and then realize that the payoff maximizing report is p∗
r = Π(A|d, π, pA, pB, D).

If subjects are not so good in probability and math, the second stage BDM mechanism

might actually mislead or confuse them and would then add extra “decision noise” into

the experimental results.

Indeed, Holt (2019) acknowledges that the “BDM procedures may be difficult for

subjects to comprehend.” (p. 110). The instructions to subjects in the Holt and Smith

(2009) experiments instructed them that their payoff is maximized by truthfully reporting

their subjective posterior. To the extent subjects trusted and followed this advice the

BDM mechanism may not necessarily confuse subjects or add extra “decision noise”.

Subjects in Holt and Smith’s experiments were not asked to make an additional bi-

nary choice of which cup they believed the observed sample was more likely to have been

drawn from. It seems quite reasonable to assume that if subjects would have been asked

to make such a choice (perhaps incentivized by an additional payment for selecting the

correct cup) that they would have chosen cup A if Π(A|d, π, pA, pB, D) > 1/2 and cup B

otherwise.16 This implies that σ = 0 in our structural logit model specification in equa-

tion (12), and we use this to generate the binary decision rule implied by subjects’ beliefs

in our analysis of implied inefficiency of subjects’ decision rules below. Any inefficiency in

subjects’ decision making is then due to “calculational noise” ν and/or bias and incorrect

weights β on the constant, LPR and LLR in the formula for subjective posterior beliefs

Πs(A|d, π, pA, pB, D, β, ν) in equation (11).

We estimated β and the parameter η under the assumption that ν ∼ N(0, η2) by

maximum likelihood using the log reported prior odds ratio regression specification in

equation (10).17 We also estimated multi-type versions of these models using the EC

algorithm and finite mixture approaches. We find a strong improvement in the likelihood

from going from 1 to 2 types, but we stopped at K = 2 types because of the relatively

small number of subjects (22 and 24 in experiments 1 and 2, respectively).
16Or randomly guess if Π(A|d, π, pA, pB , D) = 1/2.
17A small fraction of subjects reported posterior probabilities of 0 or 1 for which the log reported posterior

odds ratio is undefined. Rather than exclude these observations we estimated a truncated regression specification
where we assume that a value of 0 is reported when the subjective posterior is lower than some lower threshold p
and report a value of 1 when it exceeds an upper threshold p. It is not hard to show that the maximum likelihood
estimates of these additional parameters are the min and max of the subset of reported subjective posterior
values that are strictly in the (0, 1) interval. We verified that all conclusions are robust to simply excluding the
observations with reports of 0 or 1, or recoding them to arbitrary values such as .00001 and .99999.
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The results from the EC and finite mixture models are quite similar, both in the

parameters and the estimated fractions of each type. We omit the actual parameter values

and describe the results more informally and graphically below. We will discuss the results

from the finite mixture method, though the results from the EC algorithm are virtually

identical. For experiment 1 the two types can be described as 1)“noisy Bayesians” (45% of

the subjects) and 2) conservatives, i.e. those who put more weight on LPR than LLR. For

the noisy Bayesian subjects, we cannot reject the hypothesis that (β∗
0 , β∗

1 , β∗
2) = (0, 1, 1)

(i.e. values that result in Bayesian beliefs), though there is significant “calculational

noise” as evidenced by the large and significant estimate of η̂ = 0.91 (std error (0.14)).

We strongly reject this hypothesis for the type 2 “conservative” subjects and find a small

bias against choosing cup A. However we note that the type 2 subjects are far less noisy

than the type 1’s with an estimated value of η̂ = 0.40, less than half the value we estimated

for type 1 subjects.

Figure 14: Predicted vs Actual Median Beliefs and Loss Functions: Holt Smith Experiment 1
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The left hand panel of figure 14 provides a scatterplot of the actual subject responses

where the x axis corresponds to the implied true Bayesian posterior probability for the

(LPR, LLR) pairs for each subject and trial. For reference the black 45 degree line is

the true Bayesian posterior probability and the dotted lines are the median values of

the subjects’ responses. Using the EC algorithm we can classify each subject as type 1

(noisy Bayesian) or 2 (conservative), and the dotted lines plot the median of the subject

responses for these two types. Finally the solid red and blue lines are the predicted

medians of subject responses from the estimated structural logit model. We see that the
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model fits the data well and that the Bayesian subjects have median posterior beliefs

that are quite close to the 45 degree line. However the median beliefs of the type 2

conservative subjects increase less steeply than the true Bayesian posterior does, reflecting

“underconfidence” i.e. when the true posterior exceeds 1/2 the median beliefs of type 2

subjects is below the Bayesian posterior, and conversely when the true posterior is less

than 1/2. As we noted in the discussion in section 3.1 underconfidence itself does not

necessarily imply inefficiency of the decision rule. Instead, inefficiency is more sensitive

to the calculational noise, i.e. the value of η.

The right hand panel of figure 14 plots the loss functions implied by decision rules

that pick cup A when Πs(A|d, π, pA, pB, D, ν) > 1/2 and cup B otherwise. Due to the

higher value of η for the type 1 (noisy Bayesian) subjects, their expected win probability

is lower than the win probability of the type 2 conservative subjects (blue line). When we

compute the average win probability for all subjects weighted by the empirical distribution

of (π, D) values used in the design of experiment 1, we find an average decision efficiency

score of 96% with a standard error of 0.7%. A Wald test strongly rejects the hypothesis

that the human subjects are fully efficient decision makers. However overall, the decision

efficiency for these subjects is high and in line with results we find for subjects in El-Gamal

and Grether’s California and Wisconsin experiments.

Figure 15: Stability of beliefs: 1,2 vs 3,4 trials from Holt Smith Experiment 1
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Since the design of experiment 1 has the total number of draws from the cups D

varying from trial to trial over the values D ∈ {0, 1, 2, 3, 4}, this provides an opportunity
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to evaluate the ability of the structural logit model to predict “out of sample beliefs” and

test for structural stability. We estimated the model for values of D ∈ {1, 2} only as

the “training sample” and then compare how well the estimated model predicts median

reported beliefs for values of D ∈ {3, 4} that we refer to as the “evaluation sample.”

The left hand panel of figure 15 plots the actual median and fitted median beliefs for

type 1 and 2 subjects in the training sample and the right hand panel show both for the

evaluation sample, where the model predictions are based on parameters estimated in the

training sample where D ∈ {1, 2} only. Visually, the structural model does a good job in

predicting median beliefs of the subjects in the evaluation sample.

However we do observe that the fractions of subjects estimated to be type 1 or type

2 subjects changes when we restrict the sample. For example in the training sample, we

find only 27% of the subjects are type 1 noisy Bayesians, whereas in the evaluation sample

we estimate that 55% of subjects are noisy Bayesians. Further the amount of noise, as

estimated by η is higher in the training sample (η̂ = 1.22) compared to the evaluation

sample (η̂ = .74). Thus, we find evidence of “structural instability” and a likelihood ratio

test strongly rejects the hypothesis that subjects are using the same decision rule in both

the training and evaluation samples. Evidently, the training sample where D ∈ {1, 2}

is a harder decision problem than the evaluation sample where D ∈ {3, 4} and subjects

change their decision rules to cope with this. The parameter for the standard deviation

of the calculational errors is higher for the harder decision problem. Of course, this is

also true for a Bayesian: the loss function for a Bayesian when D{1, 2} majorizes the loss

function for a Bayesian when D ∈ {3, 4}.18

4.4 Conclusions from the re-analysis of human subject data

Below we list the key takeaways from our reanalysis of human subject data from El-Gamal

and Grether (1995), El-Gamal and Grether (1999) and Holt and Smith (2009).

18We also analyzed data from 30 subjects in Holt and Smith’s experiment 2 which was conducted online. The
overall conclusions are similar to those from our reanalysis of experiment 1, except that the EC algorithm no
longer finds any noisy Bayesians: 62% of subjects put excessive weight on the prior and the remaining 38% put
too much weight on the data. The level of calculational noise for these subjects, η, is also significantly higher.
The higher degree of noise in subjects’ reports implies significantly higher loss and thus lower efficiency. Average
decision efficiency for all subjects in all trials in experiment 2 was 91% (0.8%), lower than the 93% efficiency of
the subjects in El-Gamal and Grether’s 6 ball California experiments and lower than the 96% efficiency of human
subjects in Holt and Smith’s experiment 1.
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1. We confirm their strong rejection of the hypothesis that all subjects behave
as Bayesian decision makers (or even noisy Bayesians). Using the EC algo-
rithm and finite mixture methods we find substantial unobserved heterogeneity
among different subjects as well as significant idiosyncratic random noise that
affects their responses.

2. However subsets of subjects in the El-Gamal and Grether experiments are
classified as noisy Bayesians, ranging from 32% in the Wisconsin 6 ball ex-
periments to 77% in the Wisconsin 7 ball experiments. In the California and
Wisconsin experiments subjects provide only binary responses so a “revealed
belief approach” is required to make these inferences and we showed that the
identification of beliefs is fragile. In the experiments run by Holt and Smith
posterior beliefs were elicited via the BDM mechanism, enabling us to directly
identify their posterior beliefs. In experiment 1 we find that 45% of subjects
are classified as noisy Bayesians, but in their web-based experiment 2, none of
the subjects are.

3. Even though subject beliefs are difficult to identify in the El-Gamal and
Grether experiments, their decision rules are identified. We find high overall
decision efficiency, ranging from 93% of the optimal Bayesian win probabil-
ity in their California experiments, to 96.5% for subjects in their Wisconsin
experiments that used the 6 ball California design.

4. Holt and Smith did not ask subjects to make a binary choice of the more
likely cup, but we can impute this choice based on their elicited posterior
probability of cup A. We find significant calculational noise in the reported
posterior probabilities, but the overall efficiency of a decision rule that selects
cup A if the subjective posterior probability exceeds 1/2 is still high: 96% for
the subjects in their experiment 1 and 91% in their web-based experiment 2.

5. The structural logit model provides a good approximation to the different
decision rules used by subjects and “out-of-sample” forecasts of how their
behavior changed in responses to changes in experimental design. However our
analysis confirms the main conclusion of El-Gamal and Grether (1999) that
subjects appear to use different decision rules in different experimental designs.
Thus, the structural logit model can only approximate the more complicated
underlying cognitive processes governing human subject responses.

5 Optimality and revealed beliefs of AI subjects

We will now analyze the performance of AI subjects collected from a series of experiments

that replicated human studies, using various versions of ChatGPT: beginning with the

earliest GPT-3.5, moving on to GPT-4, and culminating in the latest version, GPT-4o.

These iterations demonstrate significant advancements in general-purpose AI capabilities.

We begin by introducing the design of the prompts used to conduct experiments with

GPTs. We first replicate the Wisconsin experiments, where subjects are required to
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perform binary classification tasks, as outlined in El-Gamal and Grether (1999). We also

elicit the subjective posterior beliefs of AI subjects using prompts very similar to the

experiments in Holt and Smith (2009). Although it is less clear whether there are specific

incentives for AI subjects to exert less effort or misreport, we retain the BDM mechanism

in our prompts to ensure that our design aligns as closely as possible with the original

human experiments.

We use the structural logit model developed in Section 3 to interpret the GPT data

and test whether subjects are Bayesian. We do this to provide a parallel analysis of

human and GPT subjects, and due to the flexibility and superiority of the structural

logit model relative to other behavioral models as we discussed in Section 4. We also

allow for unobserved heterogeneity using both the EC and finite mixture methods. In

our GPT experiments, we intentionally injected variability in their temperatures to proxy

for unobserved heterogeneity in human subjects. The temperature parameter in a GPT

controls the scale of random “noise” in their responses and thus it is akin to heterogeneity

in the extreme value σ parameter in equation 13.19 We show that the EC and finite mix-

ture methods can effectively detect and control for the variability in temperature, which

in the case of GPT subjects is actually an observed covariate rather than unobserved

heterogeneity.

We use the accuracy and decision efficiency metrics defined in section 2 to compare

the performance of GPT and human subjects. We find that GPTs are subject to biases

that lead to suboptimal decisions. However, we observe a rapid growth in overall ability

across successive generations of GPT subjects, causing their performance to improve

from sub-human levels in GPT-3.5 to human-like proficiency in GPT-4, and ultimately

to superhuman and nearly perfect Bayesian classifications in the latest version, GPT-4o.

5.1 Prompt Design for Experiments in ChatGPT

Similar to Chen et al. (2023), we conduct our experiments by submitting inquiries through

the public OpenAI application programming interface (API). Using APIs allows us to

conduct massive experiments in a timely and cost-effective manner. We formulate the
19In GPTs, the temperature refers to a parameter that controls the randomness of the model’s responses.

Lower temperature results in more deterministic and focused responses, making the model more likely to choose
the most probable next words. A higher temperature increases randomness, allowing for more varied responses.
The default temperature for the three versions of GPTs we consider here is 0.7.
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prompt by drawing an analogy between GPTs and human experiments. Each version of

a GPT represents a distinct school where human experiments have been conducted. We

consider the varying temperature settings for GPTs as analogous to different students

or human subjects. Once we define the schools and subjects, we repeated submitting

inquiries using our prompts through APIs, as each human subject participates in the

trials in different experiments.

Appendix B outlines the algorithm we developed to implement the experiments, which

involves looping over different versions of GPTs (schools), temperature settings (subjects),

experiments, and trials. We then parse the responses from ChatGPT and collect its

choices of either Cage A or B in the Wisconsin experiment,20 or the reported subjective

probability in the case of the Holt and Smith experiment. Appendix C provides further

details about the prompts we use.

One notable difference between the prompt in our study and that of Chen et al. (2023)

is that we allow GPTs to report their reasoning process, rather than solely providing the

conclusion as done in Chen et al. (2023).21 We deviate from them for two reasons. First,

in the daily use of GPTs, people rarely impose such restrictions. Second, when answering

our questions, GPTs typically answer them step by step. This chain of thought may

potentially enhance GPT performance, as suggested by Wei et al. (2022).

5.2 Analysis of the Wisconsin Experiments in GPTs

We begin by analyzing the binary classification results from the Wisconsin experiments

conducted with the GPTs. Following our re-analysis of human subjects, instead of pooling

the data from the 6 and 7 ball design we focus on the 6 ball design and use the results

from the 7 ball design as a validation set to test “structural stability” of the structural

logit model.

Figure 16 summarizes the choice probabilities in the first day experiment. Each circle

represents a trial, with prior probabilities, π, on the x−axis and number of N -draws, n,
20Occasionally, GPTs may stop prematurely before providing an answer regarding the choice between A and

B. In such cases, we resubmit the same inquiry until the GPT delivers a classification. We consider this process
to be natural, as it mirrors our everyday use of ChatGPT—if it fails to provide a satisfactory answer due to an
unexpected stop, we simply ask again. In our implementation, it takes a maximum of 5 iterations to resolve any
missing answers in our experiment.

21For example, the prompt for the investment experiment in Chen et al. (2023) ends with ”First please only
tell me the number of points for investing Asset A, then please only tell me the number of points for investing
Asset B.” Including the word only forces GPTs to report only the final conclusion without the reasoning process.
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on the y−axis. The size of each circle indicates the number of choices made by subjects,

while the color reflects their selections: deep blue indicates more subjects chose cage B,

and deep red indicates more chose cage A. The black step function represents the optimal

integer cutoffs calculated using Bayes’ rule. Given a prior probability, it is optimal for a

subject to choose cage A if n exceeds the cutoff, and to choose cage B if it falls below.

For Bayesian decision-makers, we expect red circles above and blue circles below the

Bayesian cutoffs. GPT-3.5 subjects make more errors than human subjects and advanced

GPTs, as illustrated by large purple circles above the cutoff in Figure 16. For example,

in trials with 4 N -draws and prior probabilities 0.6 and 0.7, all should choose A (pure

red), but many GPT-3.5 subjects choose B, mixing red with blue and creating the purple

circles. In trials with 3 N -draws and a prior probability 0.6, almost all GPT 3.5 subjects

choose Cage B. In contrast, human subjects mix between Cages A and B, aligning more

closely with the Bayesian posterior probability of 1/2.22

Figure 16: Choices of GPT Subjects: 6-ball Experiments
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(a) GPT 3.5
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(b) GPT-4
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(c) GPT-4o

The accuracy of GPT-4 and GPT-4o is much improved. The two large purple circles

disappear in Figure 16 and 16. However, neither GPT-4 nor GPT-4o are perfect Bayesian

decision makers. Mistakes still occur in certain trials, indicated by two purple circles for

GPT-4 and one for GPT-4o, all positioned above but close to the cutoff. 23

We then estimate a multiple-type structural logit model using the FM method.24 The
22The distribution of mistakes among trials are also different between GPT and human subjects. While a

small fraction of human subjects make errors distributed across nearly all trials, GPT-3.5 tends to be uniformly
accurate in some trials, with its errors concentrated in others.

23We find a similar pattern in the second-day experiment that the accuracy improves with more advanced
GPTs. We also note that, same as human subjects, GPTs make less mistakes in the 7-ball experiment than in
the 6-ball experiment.

24We also estimate the model using the EC algorithm. Although the EC algorithm typically identifies more
types than the FM method, we prefer the FM method for two reasons. First, some types identified by the EC
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estimates detect unobserved heterogeneity among GPT subjects, with different subjective

posterior beliefs (determined by the belief parameters β’s) and level of idiosyncratic noise

(captured by the extreme value scale parameter σ) associated with each type.

The FM method identifies two types for GPT-3.5 subjects. Figure F1(a) plots the

estimated subjective posterior beliefs against true posteriors for both types.25 Both types

deviate from the 45-degree line, showing non-Bayesian beliefs. However, when subjective

posteriors are on the same side of 1/2 as Bayesian posteriors, they can result in identical

decisions to those of Bayesian decision makers. 58% of subjects are type 1, aligning

perfectly with Bayesian decisions when true posteriors are below 1/2, but often differing

when subjective posteriors bounce to zero as true posteriors cross 1/2. Type 2 subjects

have smaller wiggles in their subjective posteriors, but can still jump to different directions

than the Bayesian posterior, leading to different decisions than Bayesian decision makers.

Turning to the estimated σ parameters, we find that type 1 subjects have smaller

values than type 2 subjects. The difference in the estimated noise parameters reflects

the known heterogeneity in GPT 3.5 subjects injected by our random assignment of

temperatures. The mean temperature for type 1 subjects is 0.43, nearly half that of the

noisier type 2 subjects. This supports the notion that a higher “temperature” corresponds

to greater “noise” in subject responses and demonstrates the effectiveness of our algorithm

in detecting unobserved heterogeneity.

The FM method only identifies a single type of GPT-4 and GPT 4o subjects, respec-

tively. The estimated posterior beliefs in Figure F1(b) and F1(c) are almost flat, but they

do have a tiny positive slope, leading to the same CCPs as Bayesian decision makers.26

The seemingly flat beliefs conceal the differences in subjective beliefs between GPT-4 and

GPT-4o. Figure 17 shows the implied classification hyperplanes, whose slopes equal the

negative ratio of coefficients for LLR (β̂1) and LPR (β̂2). The Bayesian classification
algorithm may be redundant due to subtle parameter differences or a small number of subjects in certain types.
Second, starting from the estimates of EC algorithm, the FM method can always consolidate these into fewer
types.

25Subjective posterior beliefs, Πs(A|d, π, pA, pB , D, ν) in equation 13, depend on the trials, represented by
(d, π). Rather than plotting against the two-dimensional trial specifications, we summarize (d, π) by calculating
the corresponding Bayesian posterior probabilities, offering a one-dimensional summary. Recall that we assume
ν = 0 in the Wisconsin experiment.

26We estimate the model from multiple starting values, all converging to the same single-type estimate. To
further validate that GPT-4o acts as a single-type ”noisy Bayesian” decision maker, with subjective posterior
beliefs showing a slight positive slope against true posteriors, we estimate a noisy Bayesian model with β param-
eters constrained to [0, −1, −1], estimating only σ. The likelihood ratio test does not reject the noisy Bayesian
model.
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hyperplanes, which have a slope of −1, are in black. Although the β values are small, the

ratios are close to -1, so GPT-4o subjects assign nearly equal weights to LLR and LPR

and their subjective classification hyperplane is closer to the Bayesian hyperplane than

GPT-4, which places more weight on LPR than on LLR.

Figure 17: Estimated classification hyperplanes for GPT Subjects: 6-ball Experiments
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(b) GPT-4
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(c) GPT-4o

We next turn to evaluate the model fit and “structural stability” of the multiple-type

structural logit model when applying to data generated by GPTs. Figure F2 compares

the model-predicted CCPs for GPT-3.5 with the data from the estimation sample (on the

left) and the second-day experiment as a validation sample (on the right). Although the

in-sample fit is good,27 the out-of-sample predictions, unlike those for human data, are

quite poor. This is because the choice probabilities in GPT 3.5 lack monotonicity with

respect to both LPRs and LLRs, which can be a very weak requirement for rationality.

The structural logit model, however, imposes such monotonicity and therefore, is unable

to capture the complicated nature of mistakes taken by GPT 3.5. We can extend the

simple structural logit model to capture such non-monotonicity by incorporating higher

order terms of LLRs and LPRs. However, due to limited observations, more flexible

specifications may lead to overfitting. Therefore, we choose to retain our simple structural

logit models.

Likelihood ratio tests reject the hypothesis of structural stability of the model with

GPT-4 and GPT-4o subjects. However, the rejection is weaker for more advanced GPTs.

This suggests that while the structural logit model doesn’t perfectly capture GPT be-

havior, its accuracy improves as subjects become more rational.28

27There are two exceptions. It underestimates the probability of choosing Cage A with N = 2 at a low prior
probability of π = 0.3, and it significantly overestimates the probability with N = 5 at a high prior probability
of π = 0.6.

28We conjecture that for GPT-o1, as it converges to nearly perfect Bayesian behavior, we will see structural

51



Next we compare the performance of the three generations of GPTs by calculating

accuracy and decision efficiency as in Section 2. The blue step function in Figure 18

shows that accuracy varies from below 40% to 90% among GPT 3.5 subjects, with a very

low average of just 59.4%. The accuracy curve moves up for GPT-4 and rises further

for GPT-4o, highlighting the improvement in accuracy across successive generations of

GPTs.

The rapid increase in rationality is further supported by the measure of decision

efficiency, plotted in Figure 18 by black curves, which shift upwards from 18 to 18.

Decision efficiency generally increases as subjects achieve higher accuracy, but there are

noticeable fluctuations at a local level. They arise because a subject with a slightly

higher correct response rate may struggle on “easy” cases—where the true posteriors are

more extreme and easier to differentiate—while randomly guessing correctly in “hard”

cases, where the true posterior is around 1/2. As a result, a subject with higher accuracy

may show lower decision efficiency. GPT-4 and GPT-4o have much smaller wiggles than

GPT-3.5 reflecting the lower level of estimated noise, σ, affecting their responses.

When multiple types are identified, as is the case with GPT 3.5, Figure 18 selects the

most Bayesian type and calculates the posterior probability that a subject belongs to this

type, represented by the red dots. The red Bayesian-type curve plots the average posterior

probability of the most Bayesian type, estimated using a local linear regression of these

red dots. The fluctuation in the red dots and the non-monotonicity of the Bayesian-type

curve show that higher accuracy in a subject doesn’t necessarily make it more likely to

be a Bayesian type.

Figure 18: Percent correctly answered for GPT Subjects: 6-ball Experiments
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stability and the structural logit model (the subcase of a near noiseless Bayesian) will almost perfectly describe
its behavior.
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Table 4 summarizes the overall performance of humans and various GPTs in the

Wisconsin 6 ball design experiments, averaging across all estimated types. In terms

of both efficiency and accuracy the GPT-3.5 subjects perform significantly worse than

humans. Although humans are comparable to GPT-4, they are less efficient than GPT-

4o. This underscores the rapid transition in GPT performance from “subhuman” to

“superhuman” with just a few upgrades over a relatively short period.

The bottom row in Table 4 reports the number of subject types detected by the

FM method. We find that there are fewer types identified for the later versions of GPT,

suggesting that these subjects are converging a single type that is very close to a Bayesian

decision maker. We find more heterogeneity among human subjects than for GPTs,

whose behavior is more uniform, despite our intentional introduction of heterogeneity via

temperature.

Table 4: Performance of GPTs and humans in the 6-Ball Experiments

GPT 3.5 GPT-4 GPT-4o Humans

Efficiency 84.9 96.0 97.5 96.5
(0.6%) (0.3%) (0.2%) (0.5%)

Accuracy 59.4 77.7 85.5 81.9
(8.4%) (7.4%) (6.3%) (9.1%)

No. of Types 2 1 1 3

5.3 Analysis of the Holt and Smith Experiments in GPTs

Now we turn to an analysis of elicited posteriors using the Holt and Smith design with

GPT subjects. These data allow us to directly observe subjective posterior beliefs which

are otherwise challenging to identify when subjects report only binary choices.

We controlled for subject heterogeneity in the GPT subjects using the FM method.29

As with the analysis of human data, we restrict it to at most two types due to the limited

number of subjects involved in the experiment.

We replicate both the experiments run at the University of Virginia (experiment 1) as

well as online (experiment 2). In contrast to our reanalysis of human data, we find that

the estimated subjective posterior beliefs are very similar for GPT subjects in the two

experiments. This is not surprising, as humans may be more easily distracted in online

than in offline experiments, as suggested by the larger variance in the error terms. Such
29We obtain very similar results using the EC method.

53



differences do not appear in experiments with GPTs. Therefore, we focus on presenting

the results from the experiment 1 where the average human decision efficiency was higher,

96% compared to 91% for human subjects in experiment 2.

Figure 19 plots, for the 3 versions of GPT subjects, their reported posterior proba-

bilities against the corresponding Bayesian posterior probabilities, each represented as a

dot.30 The EC algorithm identifies two types of subjects for all three GPTs, denoted by

red dots (type 1) and blue dots (type 2), respectively.

The dotted lines illustrate the median reported posterior probabilities derived from

the data. It is evident that each successive generation of GPT subjects report posterior

beliefs that increasingly align with the true Bayesian posterior, as evidenced by their

proximity to the 45-degree Bayesian line. GPT-3.5 frequently makes numerical mistakes

in calculating its posterior, with both the frequency and severity of these inaccuracies

escalating when true posterior probabilities are more extreme, particularly in the ranges

below 0.2 and above 0.8, where discrepancies are especially pronounced. For GPT-4, the

median subjective posterior probabilities of type 1 subjects closely align with the Bayesian

45-degree line, except that they may slightly overestimate the posterior probabilities when

the true posteriors are close to 1. Type 2 subjects also approximate Bayesian decision-

making in most trials, except for those with true posterior probabilities near 0, where

subjects tend to underestimate probabilities, and near 1, where they tend to overestimate.

The median subjective posteriors for both types of subjects in GPT-4o are almost identical

to the Bayesian decision makers.

Figure 19: True vs Estimated Subjective Posterior Probabilities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True Bayesian Posterior probability of cup A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

p
o

rt
e

d
 a

n
d

 T
ru

e
 p

o
s
te

ri
o

r 
p

ro
b

a
b

ili
ti
e

s

Estimated subject posteriors (full sample)

gpt-3.5-turbo-0125 subjects in experiment 1

True posterior

Predicted, type 1

Median, type 1

Predicted, type 2

Median, type 2

(a) GPT 3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True Bayesian Posterior probability of cup A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

p
o

rt
e

d
 a

n
d

 T
ru

e
 p

o
s
te

ri
o

r 
p

ro
b

a
b

ili
ti
e

s

Estimated subject posteriors (full sample)

gpt-4 subjects in experiment 1

True posterior

Predicted, type 1

Median, type 1

Predicted, type 2

Median, type 2

(b) GPT-4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True Bayesian Posterior probability of cup A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

p
o

rt
e

d
 a

n
d

 T
ru

e
 p

o
s
te

ri
o

r 
p

ro
b

a
b

ili
ti
e

s

Estimated subject posteriors (full sample)

gpt-4o subjects in experiment 1

True posterior

Predicted, type 1

Median, type 1

Predicted, type 2

Median, type 2

(c) GPT-4o

The solid red and blue lines in Figure 19 represent the model-predicted median of
30In one trial, a subject from GPT 3.5 reported a posterior probability of 2, which is excluded from Figure 19.

However, we do not exclude this observation from our sample.
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subject responses, constructed from the estimated β’s. Consistent with the findings

from the Wisconsin experiments, we observe a markedly improved model fit as subjects

approach Bayesian decision-making. GPT-3.5 exhibits numerous errors in its responses,

which makes it challenging for the simple structural logit model to capture the full range

of atypical behaviors.

The structural logit model fits much better in GPT-4 and GPT-4o. However, both

subject types identified in GPT-4 consistently overestimate posterior probabilities when

the true posteriors are below 0.7, while underestimating them otherwise. Both types as-

sign less weight to LPR, however, the type 1 subjects are closer to Bayesian, as evidenced

by a smaller difference between the coefficients on LPR and LLR.

The model-predicted and data posterior probabilities both coincide with the Bayesian

45-degree line, illustrating an almost perfect model fit. Both types of GPT-4o subjects

put almost equal weights on LPR and LLR and have negligible bias, so their posterior

beliefs are close to Bayesian. The two types are different mainly in their estimated noise

parameters.

Beyond the parameter β’s in the subjective beliefs, the estimated noise parameter

η̂ reveals another aspect of improvement, namely, the level of calculation noise in their

subjective beliefs reduces in each successive generation. For GPT 3.5, the degree of noise

is large for both types, with η̂ = 2.8 for type 1 subjects and η̂ = 2.1 for type 2 subjects.

In contrast, the level of noise is significantly smaller for GPT-4, with η̂ = 0.8 for type 1

subjects and η̂ = 1.6 for type 2 subjects. By the time we get to GPT-4o there is almost

no estimated noise for type 2 subjects, η̂ = 0.0025, which means that effectively they are

perfect, noiseless Bayesians. In contrast, type 1 subjects have a slightly larger noise of

η̂ = 0.4, making them noisy Bayesian decision makers.

To facilitate a comparison of decision efficiency across different GPTs and between

GPTs and human subjects, we calculate the expected loss functions for various prior

probabilities of selecting cage A and plot them in Figure 20. Both the proximity of

subjective beliefs to Bayesian beliefs and smaller noise levels contribute to a smaller

expected loss. Because the subjective beliefs are closer to Bayesian beliefs and there is

less noise affecting the beliefs of the more advanced GPT versions, the expected loss

functions are closer to the efficiency benchmark as shown in moving from Figure 20 to

Figure 20.
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Figure 20: Loss Functions by Types

(a) GPT 3.5 (b) GPT-4 (c) GPT-4o

Finally, table 5 summarizes the performance of human and GPT subjects in Holt and

Smith’s experiment 1. The table reports our decision efficiency and accuracy scores as well

as a new measure of “accuracy”, namely, the R2 of a regression of the reported posterior

on a constant and the true posterior. Values closer to 1 for each of these measures can be

interpreted as “more Bayesian”. We see a steady progression in efficiency and accuracy of

the GPT subjects from GPT 3.5 to GPT 4o. The human subjects are superior to GPT

3.5 and 4 in terms of efficiency, but GPT-4o shows superhuman performance, especially

in terms of decision efficiency and accuracy as measured by R2, reflecting the fact that

reported posteriors by GPT subjects are significantly closer to the true Bayesian posterior

on average than the noisier human subjects.

The EC algorithm finds 2 types of subjects for each version of GPT and human

subjects, and in each case the key difference is the level of estimated noise (captured by

the standard deviation parameter η representing “calculational errors” in the structural

logit model). Except for GPT 3.5, both types of subjects are “noisy Bayesians” but one

of the types makes significantly larger calculational errors than the other. Among the

GPT-4o subjects, 45% are classified as essentially perfect noiseless Bayesians with 100%

decision efficiency. For human subjects, 45% are Bayesians also, but due to the greater

level of noise in their response their decision efficiency is lower, 95%.

For GPT 4 and GPT 4o this noise correlates directly with the “temperature” parame-

ter we set to generate heterogeneity among the GPT subjects. For example for GPT-4o,

the noisier subjects had average temperature of .75 (std error .30), twice the average

temperature of the less noisy subjects identified by the EC algorithm. Thus, as we would

expect higher temperature implies noisier responses by GPT subjects and this noise leads

to lower efficiency and accuracy. We can obtain even better performance for the GPT-4o
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subjects by reducing the temperature parameter.

Table 5: Performance of humans and GPT in the Holt-Smith Experiments

GPT 3.5 GPT-4 GPT-4o Humans

Efficiency 75.0 93.0 99.4 96.0
(1.0%) (0.4%) (0.3%) (0.7%)

Accuracy 58.1 84.0 98.2 87.4
(0.1) (0.1) (0.02) (0.1)

R2 0.7 41.8 88.0 63.5
No. of Types 2 2 2 2

5.4 Context Effects

Echoing David Grether’s criticism that humans are more influenced by context effects

in ”real world” situations, we test whether GPT subjects exhibit similar biases. We

randomly sample 100 trials in the Wisconsin 6-ball experiment for each GPT model,

where temperatures were near the median, and replace bingo cages and balls in the

prompt as ponds and fishes, where humans may have more experience and GPTs might

learn from that. Table 6 compares the accuracy of the original bingo experiments with

the reframing pond experiments. Context effects are rejected by the t-test for all three

GPT models we considered, as none are even close to the conventional significance levels.

Table 6: Accuracy Comparison between Bingo and Pond Experiments

Model Bingo Pond t-stat p-value N

GPT-3.5 0.63 0.69 -0.84 0.40 100
GPT-4 0.85 0.83 0.45 0.66 100
GPT-4o 0.94 0.92 0.63 0.53 100

5.5 Conclusions from the analysis of GPT subjects

Below we list the key conclusions from our analysis of the El-Gamal and Grether Wis-

consin experiments and the Holt and Smith experiments using GPT subjects:

• We find a rapid improvement in the accuracy and decision efficiency in suc-
cessive versions of GPT, from sub-human performance for GPT 3.5, to ap-
proximately human for GPT-4, and super-human performance for GPT-4o.

• The estimates of the multiple-type structural logit model reveal three key
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aspects of this improvement in performance over successive generations of
GPT: (i) decreasing bias, (ii) increasingly equal weight on the data and the
prior, and (iii) lower levels of idiosyncratic calculational and decision noise.

• We find less unobserved heterogeneity for GPTs than humans in the Wisconsin
experiments, especially for GPT-4 and 4o, where we find only one type of
subject, noisy Bayesians. In the Holt and Smith experiment, 40% of subjects
are classified as perfectly Bayesian, while the remaining 60% are best described
as noisy Bayesians.

• As in the case of human subjects, a likelihood ratio test of “structural stability”
rejects the hypothesis that the structural logit model is the correct model
of the choices of GPT subjects. However, the P-values of these rejections
increase with each successive version of GPT, indicating that the structural
logit model provides an increasingly good approximation to the behavior of
successive generations of GPT.

6 Analysis of Errors from AI Subject Response Text

Most econometric models treat humans as black boxes and apart from some research from

neuroscience, we do not know exactly how humans process information. However, from

the textual responses of GPT, we have the unique advantage of observing the reasoning

of GPT subjects, opening the door to analyze where GPTs make mistakes. There are

two challenges in such an analysis: the errors made by GPTs can be highly diverse, and

the textual responses are not well-structured.

We overcome the first challenge by exploiting the simple structure of the binary de-

cision problem, which allows us to classify errors into nine binary error flags under four

broad categories. To obtain a distribution of GPT errors across categories, we then

develop a GPT grader to efficiently process large-scale unstructured responses and de-

termine the value of error flags within each category. Key inputs for the GPT grader

include a reference answer using Bayes’ rule, detailed grading rubrics, original experiment

prompts and responses. We present our grading prompt in Appendix D.

We use a more advanced version, GPT o3-mini, to grade three less advanced mod-

els considered, ensuring the grader has superior performance in the binary classification

tasks and general intelligence. We also manually reviewed 50 randomly sampled textual

responses for each model to verify the GPT grader’s performance. Overall, our indepen-

dent cross-check confirmed the accuracy of GPT o3-mini’s grading and classification of
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errors in the responses from ChatGPT 3.5, 4 and 4o.31

6.1 Error Taxonomy

We focus on the textual responses from the 6-ball Wisconsin experiment. Table 7 presents

the four broad categories and the error flags under each category.32 The first type of error

under Panel A examines whether GPTs understand the context and correctly interpret

experimental parameters, including cage composition (i.e., the number of N balls in each

cage), sample size (D), and the observed number of N balls (d).

The second type evaluates whether GPT subjects are “conceptually” Bayesian by

checking if subjects take the prior information into consideration and if they use the

sample information as inputs to their decision. Failure to use this information can explain

choices that are consistent with conservatism and representativeness. We emphasize the

consideration of both prior and likelihood in the second category, leaving the examination

of numerically correct posterior calculation to the third category under Panel C.

In Panel C, we check whether the prior probability (πA),33 the likelihood probabilities

(f(d|pA, D) and f(d|pB, D)) and the posterior ( πAf(d|pA,D)
πAf(d|pA,D)+(1−πA)f(d|pB ,D)) or posterior

odds ( πAf(d|pA,D)
(1−πA)f(d|pB ,D)) are correctly calculated.

There are a few points worth discussing. First, we explicitly instruct the GPT grader

to allow for the omission of binomial coefficients when calculating the likelihood, as

they will cancel out and do not affect the posterior calculation. Second, we find that

some GPT subjects, instead of calculating the posterior probability Π(A|d, π, pA, pB, D)

as in equation 2, make decisions by calculating and comparing the product of prior

and likelihood, π × f(d|pA, D) and (1 − π) × f(d|pB, D). This approach is consistent

with Bayes’ rule, and in such cases, the subject passes error flag 8. Third, similar to

the identification challenge discussed in 3.1, it is sufficient for subjects to make correct

decisions if the posterior is on the same side of 1/2 as the Bayesian posterior. However,

since GPT subjects usually report the posterior probabilities, we apply a stricter grading
31In Appendix G, we report the error rates for the same set of 50 samples graded by GPT o3-mini and a human

grader. Additionally, we include the grading results using the most advanced version of GPT o1, which, while
offering slightly superior performance, is significantly more costly.

32To demonstrate the error flags, we provide excerpts from textual responses as example answers classified
under each error flag in Appendix E.

33To calculate the prior probability, subjects must understand the process of rolling a 10-sided die and divide
the specified range of results for Cage A by 10. While this is straightforward for humans, we occasionally find
that GPT subjects use an incorrect numerator or denominator when calculating the prior probability for Cage
A. See Appendix E for an example.
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rubric by marking the subject as making an error in flag 8 if their calculated posterior

(or posterior odds) was incorrect regardless of whether it leads to the same decision as

the true posterior.

The final category under Panel D examines whether the final decision (Cage A or

B) aligns with the previous reasoning, which substantiates the decision noise ε in the

structural logit model. We instruct the GPT grader to read the overall reasoning of the

textual responses and then predict the expected outcome based on the reasoning flow.

Almost all GPT-4 and 4o subjects answer the problem by calculating the posterior or

posterior odds. In such cases, we define error flag nine, final decision contradicting the

previous reasoning, as choosing cage A when the posterior of Cage A is below 1
2 , or when

π×f(d|pA, D) is smaller than (1−π)×f(d|pB, D). In other cases, we ask the GPT grader

to explicitly predict the outcome based on the reasoning just before the final answer and

compare whether this prediction is consistent with the subjects’ report.

6.2 Grading Results

We apply the grading prompt to evaluate 500 randomly selected text responses for each

GPT model, regardless of whether the final decision aligns with Bayes’ rule. The output

of the grading algorithm assigns a value to each error flag, with 1 indicating that the

student’s response contains a mistake. Table 7 presents the error rates for nine types of

errors. We also report the fraction of responses inconsistent with the Bayes’ rule at the

bottom of the Table.34

34The sum of error rates across all categories doesn’t necessarily match the fraction of incorrect responses for
two reasons. First, errors are not mutually exclusive. If a subject ignores the prior (error flag 4 = YES), they
will also have errors in calculating the prior (error flag 6 = YES) and subsequently the posterior (error flag 8 =
YES). Second, since the final decision’s consistency with Bayes’ rule only requires comparing the posterior to 1

2 ,
an error in calculating the posterior does not necessarily lead to a mistake in the final decision.
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Table 7: Error Distribution from GPT Responses

Error Flag (Yes/No) GPT 3.5 (%) GPT 4 (%) GPT 4o (%)

Panel A. Data read-in errors

1 Error reading the compositions of the two cages 0.4 0.4 0.0
2 Error reading the number of balls drawn from the two cages 0.0 0.0 0.0
3 Error reading the outcome of the draws 0.0 0.0 0.0

Panel B. Errors in the application of Bayes Rule

4 Ignoring the prior 82.4 1.4 0.6
5 Ignoring the likelihood 0.2 0.0 0.0

Panel C. Errors in computing the posterior probability

6 Error calculating prior probability 83.4 2.2 0.6
7 Error calculating the likelihood 70.0 67.8 13.6
8 Error calculating the posterior (or posterior odds) 98.4 72.0 21.8

Panel D. Errors in the final decision

9 Final decision contradicting the previous reasoning 4.4 3.0 4.6

Fraction of responses inconsistent with Bayes’ rule 35.2 14.2 9.2

Table 7 reinforces our conclusion about the rapid improvement from GPT-3.5 to GPT-

4 and GPT-4o, as GPT-4 and GPT-4o make significantly fewer errors in almost all types.

This not only reflects higher accuracy, but also indicates fewer mistakes in calculating

posterior probabilities or other steps even when final decisions align with Bayes’ rule.

Panel A shows that GPT subjects rarely make mistakes in reading experimental pa-

rameters, suggesting a good understanding of the experimental setup.

We observed a remarkable transformation from non-Bayesian to conceptual Bayesian

reasoning from GPT-3.5 to GPT-4. More than 80% of GPT-3.5 decisions rely only

on likelihood, lacking a Bayesian rationality even conceptually. This aligns with our

findings in Section 5. Our manual review of the text responses shows that they often

use representativeness heuristics, making decisions by matching observed patterns in

the sample with the composition of the two cages, or simply comparing the likelihood

of each cage being the sample’s source. Interestingly, GPT-3.5 almost never ignores

information from the sample, suggesting it is less prone to conservative bias. GPT-4 and

GPT-4o almost always demonstrate at least ”conceptual Bayesian” reasoning, either by

explicitly writing down Bayes’ formula or informally considering both prior and likelihood

information.

Panel C highlights another major achievement in transitioning from ”conceptual Bayesian”

to ”perfect Bayesian” when moving from GPT-4 to GPT-4o. In GPT-4o, 78% of responses
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correctly calculate the posterior, compared to just 28% for GPT-4. GPT-3.5 struggles

to calculate both the likelihood and prior probability, often due to overlooking prior

information.

Panel D indicates that all models experience decision noise. Surprisingly, although

GPT-4o generally outperforms GPT-4, its final decisions are more likely to be inconsis-

tent with the calculated posterior, whether comparing it to 1
2 or comparing the numerator

and denominator of the posterior odds. To understand it, we delve deeper into the sam-

ple graded by the human grader, who also confirms this observation.35 First, we find

that GPT-4o is more likely to report the posterior as fractional numbers than GPT-4,36

probably due to its ability to more accurately calculate the posterior, as shown in Panel

C. However, the fractional numbers reported by GPT-4o, though precise, are more com-

plex with more digits37, making comparisons for the final decision more challenging.38

Therefore, although GPT 4o can calculate the posterior more accurately, it may shoot

itself in the foot when making final decisions by comparing these numbers.

6.3 Conclusion from Analysis of Textual Responses

We summarize our main finding from the analysis of textual responses here.

1. Analyzing the textual responses confirms the rapid improvement from GPT 3.5,

to GPT-4 and 4o as more advanced GPTs make less mistakes in almost all error

categories.

2. We observed a remarkable transformation from non-Bayesian to conceptual Bayesian

reasoning from GPT-3.5 to GPT-4.

3. Transitioning from GPT-4 to GPT-4o represents another major leap from “con-

ceptual Bayesian” to “perfect Bayesian,” achieving the accurate calculation of a

Bayesian posterior.
35The human grader reports an error rate of 14% for GPT-4o and 2% for GPT-4 regarding the decision

inconsistency error flag. See Appendix G.
36Out of the 50 samples, 86% are reported as fractional numbers in GPT-4o, with the remainder as rounded

decimals. This percentage decreases to 66% in GPT-4.
37See Appendix E for an example where the posterior for Cage A is calculated and reported as 2612736

4200459 , which
equals 0.62 as a decimal. The GPT-4o model should have chosen Cage A, but instead, it chose Cage B.

38Out of 17 responses where GPT-4o reported posteriors as fractional numbers, 7 resulted in mistakes during
the final decision. In contrast, none of the 7 cases with fractional posteriors from GPT-4 had such issues. We
note that only 1 decision was inconsistent with the calculated posterior out of 43 cases for GPT-4 and 33 cases
for GPT-4o when using rounded decimals.
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7 Conclusion

This paper examines whether humans or ChatGPTs more closely resemble a Bayesian

decision maker in a simple binary classification task. Although the task is straightforward,

Bayesian rationality is fundamental in decision theory and broadly applicable to many

important contexts.

We introduce a parsimonious structural logit model with unobserved heterogeneity to

infer subjects’ subjective beliefs. Our model demonstrates greater predictive power for

human behaviors than those used in previous studies. Additionally, we develop a novel

decision efficiency measure, allowing us to compare different groups with varying task

difficulties, addressing limitations of the popular accuracy measure based on Bayes’ rule

consistency.

We estimate the structural logit model using data from human experiments by El-

Gamal and Grether (1995), El-Gamal and Grether (1999), and Holt and Smith (2009),

alongside our replication using various ChatGPTs. Our study differs from previous lit-

erature in two key ways. First, we account for significant heterogeneity across GPT

versions, showing that conclusions vary due to rapid improvements in Bayesian ratio-

nality. We document the evolution from sub-human performance in early GPT-3.5 to

near-human performance in GPT-4, and superior performance in GPT-4o. Second, we

highlight considerable heterogeneity among human subjects, as revealed by our model.

The most efficient humans can closely resemble Bayesian decision makers, comparable to

the most advanced GPTs. We also find less unobserved heterogeneity in GPT subjects,

particularly in more advanced versions.

As a first step in unraveling the decision mechanisms of GPTs, we leverage their abil-

ity to display reasoning in textual responses to analyze where they make mistakes. By

exploring the simple structure of binary choice models, we categorize errors and provide

clear guidance for GPT-4o graders to interpret these responses. Examining the extensive

textual data reveals a remarkable shift from non-Bayesian to conceptual Bayesian rea-

soning from GPT-3.5 to GPT-4, with GPT-4o making another exceptional transition to

accurately calculating posterior probabilities.
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Appendix A Proof of Lemma L2

This appendix provides the proof of identification of the structural logit model when
σ > 0, Lemma L2 of section 3.1. We start by assuming that the agent’s decision rule
P (A|π, n) is identified for all possible values of π ∈ [0, 1] and all possible experiments
involving draws from one of two bingo cages where the number of draws from these cages,
and hence the possible values of n, can be arbitrarily large. In fact because we assume that
the experimenter can run an arbitrary number of experiments and observe the subject
outcomes, the experimenter has the freedom to design experiments with arbitrary values
for the log-likelihood ratio LLR and the log-prior odds ratio LPR, so we assume these
quantities can take any value between −∞ and +∞ via an appropriately designed set of
experiments. Further, since the subject’s decision rule depends on (π, n) via the quantities
(LPR(π), LLR(n)) and the experimenter has the freedom to design experiments that allow
LPR and LLR to take on any values in R2, we can treat the subject’s decision rule as a
known function of two continuous arguments, (LPR, LLR), which constitute “sufficient
statistics” for the subject’s posterior beliefs, and hence for the subject’s decision rule. In
short, we can assume that the subject’s decision rule is a known conditional probability
of the form P (A|LPR, LLR) mapping R2 into [0, 1].

Now, let the subject’s true decision rule be given by the function

P (A|LPR, LLR, σ∗, β∗) = 1
1 + exp{[2Πs(A|LPR, LLR, β∗) − 1]/σ∗}

, (23)

and by assumption, this function is identified, i.e. its value is known for any pair
(LPR, LLR) ∈ R2. Now suppose there is some other structural logit that is observation-
ally equivalent to the true one. That is, suppose there is a function P (A|LPR, LLR, σ, β)
such that

P (A|LPR, LLR, σ∗, β∗) = P (A|LPR, LLR, σ, β), ∀(LPR, LLR) ∈ R2. (24)

We will now that that if this is true, then it must be the case that σ = σ∗, and β = β∗.
That is, the parameters of the structural logit model are identified.

We can show this under a full support condition which is a version of an “identification
at infinity” type of argument. The full support condition implies that the experimenter
can conduct sufficient experimentation on subjects that the log-prior ratio LPR takes on
any value on the real line. It follows that by taking the limit as LPR → ∞ we have
Πs(A|LPR, LLR) → 0. Since equation (24) holds for all (LPR, LLR) ∈ R2 and is a
continuous function of these variables, it follows that the equality must hold in the limit
so we have

1
1 + exp{1/σ∗}

= 1
1 + exp{1/σ}

, (25)

which implies that σ∗ = σ, so this parameter is identified. Using this result we can
immediately conclude from equations (23) and (24) that

Πs(A|LPR, LLR, β∗) = Πs(A|LPR, LLR, β). (26)

Since Πs(A|LPR, LLR, β) = 1/(1 + exp{β0 + β1LPR + β2LLR}, it follows that we have

β∗
0 + β∗

1LPR + β∗
2LLR = β0 + β1LPR + β2LLR, ∀(LPR, LLR) ∈ R2. (27)
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Let LPR = LLR = 0 (which is possible due to the full support assumption). If follows
from equation (27) that β∗

0 = β0. Next, set LLR = 0 and LPR = 1, and it follows that
β∗

1 = β1. Finally, set LLR = 1 and LPR = 0, and it follows that β∗
2 = β2. We conclude

that the parameters (σ∗, β∗
0 , β∗

1 , β∗
2) of the structural logit model are identified.
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Appendix B Algorithm for Data Collection from LLMs

Algorithm 1 Data Collection and Processing
1: Initialize data collection specifications based on the experiment specified by run name,

generate textual prompts and model settings, and save to disk
2: 'send' prompts and model settings to OpenAI via API
3: while any request is not completed do
4: for every request do
5: 'retrieve' the request’s status
6: if the request has been completed and not retrieved then
7: Retrieve the responses and save to disk
8: else if the request has failed then
9: 'resend failed' request(s)

10: else if
11: thencontinue
12: end if
13: end for
14: 'finalize' the responses, which includes:
15: Align responses with the original prompts
16: Parse the responses into the final answers like Cage A or B or a numerical value
17: Append metadata and informational columns
18: Save different formats of the collected data to disk
19: Check for invalid responses that cannot be parsed into a final answer
20: if any response is invalid then
21: 'resend invalid' prompts and model settings to OpenAI via API
22: end if
23: end while
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Appendix C Prompts used to collect data from LLMs

In this section, we provide our prompt to replicate using LLMs the two experiments at the
University of Wisconsin-Madison and the two experiments reported in Holt and Smith
(2009).

There are no developer / system messages, only one user message for each chat
completion request for each trial. The exact numerical values will reflect the specifications
of the actual trial, the followings are examples.

C.1 Wisconsin

For the experiment that allows for reasoning, the example user message is:
You are participating in a decision - making experiment , where you

can earn money based on the number of correct decisions you
make.

There are two identical bingo cages , Cage A and Cage B, each
containing 6 balls. Cage A contains 4 balls labeled "N" and 2
balls labeled "G", while Cage B contains 3 balls labeled "N"
and 3 balls labeled "G".

A 10- sided die is used to determine which of the two cages will
be used to generate draws. If a random roll of the die shows 1

through 3, I will use Cage A; if it shows 4 through 10, I
will use Cage B. You will not know the outcome of the roll of
the die or which cage I use.

Once a cage is chosen at random based on the roll of the die , it
is used to generate draws with replacement .

I have drawn a total of 6 balls with replacement . The result is 3
"N" balls and 3 "G" balls.

After observing this outcome , which cage do you think generated
the observations ? Your decision is correct if the balls were
drawn from that cage.

YOU ARE WELCOME TO ALSO DESCRIBE YOUR REASONING , BROKEN INTO
SEPARATE STEPS , TO EXPLAIN HOW YOU ARRIVED AT YOUR FINAL
ANSWER .

Please state your answer in the following format at the end.
"Final answer : Cage A." or "Final answer : Cage B.".

For the experiment that prohibits reasoning, the last section of the user message is
substituted with:
PLEASE JUST REPORT YOU FINAL ANSWER AND DO NOT PROVIDE ANY

REASONING AS TO HOW YOU ARRIVED AT YOUR FINAL ANSWER .
Please state your answer in the following format .
"Final answer : Cage A." or "Final answer : Cage B.".
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C.2 Holt and Smith

For the experiment that allows for reasoning, the example user message is:
This is an experiment in the economics of decision making .

Various agencies have provided funds for the experiment . Your
earnings will depend partly on your decisions and partly on
chance . If you are careful and make good decisions , you may
earn a considerable amount of money , which will be paid to you
, privately , in cash , at the end of the experiment . In
addition to the money that you earn during the experiment , you

will also receive $6. This payment is to compensate you for
showing up today.

This experiment involves two stages . In stage 1 we will show you
some information including the result of a drawing of 1 ball
from one of two possible cages , each containing different
numbers of light and dark balls. Then at the start of stage 2
you will report a number P between 0 and 1. After your report ,

we will draw a random number U that is equally likely to be
any number between 0 and 1. Your payoff from this experiment
will either be $1000 or $0 depending on your report P and the
random number U.

Let ’s describe the two stages in more detail now. In stage 1 we
will show you 1 ball that are drawn at random from one of two
possible urns labelled A and B.

Urn A contains 2 light balls and 1 dark ball.
Urn B contains 1 light ball and 2 dark balls.

We select the urn , A or B, from which we draw the sample of 1
ball by the outcome of throwing a 6 sided die.

We do not show you the outcome of this throw of the die but we do
tell you the rule we use to select urn A or B.

If the outcome of the die throw is 1 to 3 we select urn A.
If the outcome of the die throw is 4 to 6, we use urn B to draw

the random sample of 1 ball.

Once you see the outcome of the sample of 1 ball , stage 1 is over
and stage 2 begins .

At the start of stage 2 we ask you to report a number P between 0
and 1. Your payoff from this experiment depend on another

random number , which we call U, which we draw after you report
the number P. We draw the random number U in a way that every
possible number between 0 and 1 has an equal chance of being

selected .
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Here is how you will be paid from participating in this
experiment . There are two possible cases:

Case 1. If the number U is less than or equal to P then you will
receive $1000 if the sample of 1 ball we showed you in stage 1

was from urn A and $0 otherwise .
Case 2. If the number U is between the number P you report and 1,

you will receive $1000 with probability equal to the realized
value of U, but with probability 1-U you will get $0.

OK , this is the setup. Let ’s now start begin this experiment ,
starting with stage 1.

We have tossed the die (the outcome we don ’t show to you) and
selected one of these urns according to the rule given above (
i.e. urn A if the die throw was 1 to 3, and urn B otherwise ).
We have drawn 1 ball from the selected urn and the outcome is
D, i.e., Dark.

Now , we are at stage 2 where we are asking you , given the
information from stage 1 to report a number P between 0 and 1
that in conjunction with the random number U will determine if

you get either $1000 or $0 according to the rule given in
cases 1 and 2 above.

Please report a number P between 0 and 1 that maximizes your
probability of winning $1000 in this experiment .

YOU ARE WELCOME TO ALSO DESCRIBE YOUR REASONING , BROKEN INTO
SEPARATE STEPS , TO EXPLAIN HOW YOU ARRIVED AT YOUR FINAL
ANSWER P.

Please state your answer in the following format at the end.
Final answer : [your P value here ].

For the experiment that prohibits reasoning, the last section of the user message is
substituted with:
PLEASE JUST REPORT P AND DO NOT PROVIDE ANY REASONING AS TO HOW

YOU ARRIVED AT THE VALUE P.
Please state your answer in the following format .
Final answer : [your P value here ].
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Appendix D Grading Prompts

We provide a grading prompt that evaluates GPT-generated textual responses and iden-
tifies errors. First, we introduce the grading task and the role of the grader to GPT-01.
Next, we present the experiment design prompt along with the original responses from
GPT students. The key input for our grading prompt is a meticulously crafted step-by-
step solution to the binary choice problem, which includes calculating the prior probabil-
ity, determining the likelihood, applying Bayes’ rule to find the posterior probability, and
making a final decision based on the posterior. This solution is crucial as a benchmark
for the GPT grader to understand the binary decision task and identify errors in the
student responses. We then provide detailed grading rubrics that allow the GPT grader
to classify different error types. Finally, the prompt specifies the format for outputting
error flags. We develop Python code to loop over different student responses, parameters
of trials, and the corresponding benchmark solutions.

General Instruction about the Role of the Grader
You are an expert and detailed grader for this task:

Introduce the Experiment Prompt
You are participating in a decision - making experiment , where you

can earn money based on the number of correct decisions you
make.

There are two identical bingo cages , Cage A and Cage B, each
containing 10 balls. Cage A contains 4 balls labeled "N" and 6

balls labeled "G", while Cage B contains 6 balls labeled "N"
and 4 balls labeled "G".

A 10- sided die is used to determine which of the two cages will
be used to generate draws. If a random roll of the die shows 1

through 6, I will use Cage A; if it shows 7 through 10, I
will use Cage B. You will not know the outcome of the roll of
the die or which cage I use.

Once a cage is chosen at random based on the roll of the die , it
is used to generate draws with replacement .

I have drawn a total of 7 balls with replacement . The result is 3
"N" balls and 4 "G" balls.

After observing this outcome , which cage do you think generated
the observations ? Your decision is correct if the balls were
drawn from that cage.

YOU ARE WELCOME TO ALSO DESCRIBE YOUR REASONING , BROKEN INTO
SEPARATE STEPS , TO EXPLAIN HOW YOU ARRIVED AT YOUR FINAL
ANSWER .

Please state your answer in the following format at the end.
"Final answer : Cage A." or "Final answer : Cage B.".
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Student textual responses
Based on the outcome of 3 "N" balls and 4 "G" balls , here is my

reasoning broken down into steps:

Step 1: Calculate the probability of getting 3 "N" balls and 4 "G
" balls from each cage.

- Probability of getting 3 "N" balls and 4 "G" balls from Cage A:
(4/10) ˆ3 * (6/10) ˆ4 = 0.00324

- Probability of getting 3 "N" balls and 4 "G" balls from Cage B:
(6/10) ˆ3 * (4/10) ˆ4 = 0.00307

Step 2: Compare the probabilities of the two cages.

- The probability of getting the observed outcome is slightly
higher for Cage A than Cage B.

Step 3: Consider the initial probabilities of each cage being
chosen .

- Cage A has a 6/10 chance of being chosen , while Cage B has a
4/10 chance .

Step 4: Combine the probabilities of the observed outcome and the
initial probabilities of the cages being chosen .

- Probability of getting the observed outcome from Cage A:
0.00324 * 0.6 = 0.00194

- Probability of getting the observed outcome from Cage B:
0.00307 * 0.4 = 0.00123

Step 5: Compare the combined probabilities .

- The combined probability of getting the observed outcome is
higher for Cage A than Cage B.

Final answer : Cage A.

Step-by-step Solution Benchmark
Step 1: Prior from die roll.

p(A) = 3/5 = 0.6000; p(B) = 2/5 = 0.4000
Prior ratio p(A)/p(B) = 3/2 = 1.500000

Step 2: Cage compositions .
Cage A: p(NA) = 2/5 = 0.4000, p(GA) = 3/5 = 0.6000
Cage B: p(NB) = 3/5 = 0.6000, p(GB) = 2/5 = 0.4000

Step 3: Observed outcome & binomial likelihood .
Observed : 3 ’N’, 4 ’G’ (total 7).
L(A) = 4536/15625 = 0.290304 , L(B) = 3024/15625 approx 0.193536
Likelihood ratio L(A)/L(B) = 3/2 = 1.500000
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Step 4: Posterior components & probabilities ( fraction & decimal )
.

p(A)*L(A) = 13608/78125 approx 0.174182
p(B)*L(B) = 6048/78125 approx 0.077414
Post(A) = 9/13 = 0.692308
Post(B) = 4/13 = 0.307692
Posterior ratio Post(A)/Post(B) = 9/4 = 2.250000

Step 5: Decision .
Final answer : Cage A.

Grading Rubrics
Evaluate the student ’s answer based on the following criteria :

Part I. Did They Make a Mistake When Reading the Data?

Instructions : For (1) , (2) , and (3) , we want to see if the
student understands the basic experimental setup and correctly

incorporates the trial parameters into their reasoning . Focus
on whether they read the relevant information accurately , not
on how they use it later. For example , if a student correctly
identifies the number of N balls in cages A and B but makes a
comparison error later , you should still answer YES if the

criterion is reading the number of N balls correctly .

(1) Cage Composition : Do they explicitly mention or implicitly
acknowledge the number of N and G balls in each cage? Answer
Yes or No.

(2) Draw Count: Do they explicitly mention or implicitly
acknowledge the total number of balls in the sample ? Answer
Yes or No.

(3) Observed Data: Do they explicitly mention or implicitly
acknowledge the number of N draws from the sample ? Answer Yes
or No.

Part II. Are they conceptually Bayesian ?

Instructions : A Bayesian decision maker should consider both
prior information (the announced probability of using a cage)
and posterior information (the likelihood that the sample was
drawn from a cage). Criteria (4) and (5) assess whether the
student incorporates both prior and posterior information in
their reasoning . We are not looking for explicit numerical
calculations , but both types of information should be part of
their reasoning process .

(4) Ignoring Prior: Do they make a decision using only the
likelihood or observed data , ignoring the prior conceptually ?
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Answer Yes or No.

(5) Ignoring Likelihood : Do they make a decision using only the
announced probability of using cage A, ignoring the sample
information conceptually ? Answer Yes or No.

Part III. Can they correctly calculate the Bayesian posterior
probability ?

Instructions : To answer correctly , the student should apply Bayes
’ rule and calculate the posterior probability accurately .
This involves three steps:

Prior Probability : Calculate the prior probability that the
sample is drawn from cage A and B, based on the announced
probability in the experiment .

Likelihood : Calculate the likelihood that a sample is drawn from
each cage , using the number of N draws in the sample and the
cage composition .

Posterior Probability : Either calculate the posterior probability
or compute the product of likelihood and prior for each cage.

Note: Values are equal if they round to the same number at two
decimal places . For example , 0.333 and 0.33 should be treated
as the same. If the student doesn ’t attempt the calculation or

leaves it incomplete , answer No. If interrupted , also answer
No.

(6) Prior Computed : Do they calculate the prior probability for
each cage correctly ? Answer Yes or No.

(7) Likelihood Computed : Do they calculate the likelihood
correctly ? Answer Yes or No. Note , that omitting the binomial
coefficient is acceptable , as it is a constant for both cages.

(8) Posterior Computed : Do they apply Bayes ’ rule and calculate
the posterior probability correctly ? Alternatively , answer Yes

if they correctly compute and compare the product of
likelihood and prior probability . Answer Yes or No.

Part IV. Do they make a final decision that is consistent with
their reasoning process ? Instructions : The student should
reach a conclusion based on their reasoning process , and the
final answer should align with that conclusion . You should
examine the student ’s reasoning and predict what they should
report (e.g., cage A or cage B), then compare it to their
actual report . Provide YES if they are consistent .

Here are two examples of inconsistency .
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A student calculates the posterior probability of cage A as 2/3.
Since 2/3 is greater than 1/2, they should report cage A but
instead report cage B.

A student finds the product of likelihood and prior to be 2/3 for
cage A and 1/3 for cage B. Since 2/3 is greater than 1/3,

they should choose cage A but report cage B.
(9) Inconsistency : Based on the student ’s reasoning process and

decision rule , determine what the final decision should be. Is
the decision they actually make consistent with their

reasoning ? Answer Yes or No.
Note , that we are looking for cases where the student has reduced

the answer to decimals or simple fractions , and decides
against what they should have decided .

We do want to penalize fraction -to - decimal conversion errors if
they clearly lead the student to the wrong final choice .

If the student never attempts a numeric calculation or fails to
provide a final decision at all , also answer No.

Output Instructions
Provide detailed reasoning first and then at the end output a

JSON. Your answers must use: Yes = 1, No = 0.

{{
"1 _correct_cage_composition ": 1/0,
"2 _correct_draw_count_and_with_replacement ": 1/0,
"3 _correct_use_of_observed_data ": 1/0,
"4 _conceptual_ignore_prior_likelihood_only ": 1/0,
"5 _conceptual_ignore_likelihood_prior_only ": 1/0,
"6 _compute_prior_exact ": 1/0,
"7 _compute_likelihood_exact ": 1/0,
"8 _compute_posterior_exact ": 1/0,
"9 _decision_consistency ": 1/0

}}
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Appendix E Examples of Textual Responses under Error Flags

In this section, we excerpt from representative examples of students’ original textual
responses, classified by the GPT grader under each category, along with the grader ’s
responses explaining the reasoning behind its classifications. We don’t present examples
for Error Flags 2, 3 and 5 because they are rarely, if any, detected.

1. Cage Composition

Student

Based on the given information, here is my reasoning broken into separate steps:
Step 1. Since there are more N balls in Cage A than in Cage B, and the outcome
after 7 draws is 4 N balls and 3 G balls, it’s more likely that the draws came from
Cage A because there are more N balls available in that cage.
Step 2. The probability of getting a N ball from Cage A is 4/10 = 0.4, and the
probability of getting a G ball from Cage A is 6/10 = 0.6.
Step 3. The probability of getting a N ball from Cage B is 6/10 = 0.6, and the
probability of getting a G ball from Cage B is 4/10 = 0.4.
Step 4. Considering the outcomes of 4 N balls and 3 G balls after 7 draws, it is more
probable that the draws came from Cage A because the probability of drawing a
N ball from Cage A (0.4) is higher than drawing a N ball from Cage B (0.6).
Step 5. Therefore, my final answer is: Final answer: Cage A.

Grader

The student states there are more N balls in Cage A than in Cage B. This is
incorrect because Cage A actually has 4 N balls and Cage B has 6 N balls. Thus,
they misread the cage composition.

4. Ignoring Prior

Student

Step 1: Calculate the probability of getting 3 ”N” balls and 3 ”G” balls from each
cage.
- For Cage A: The probability of drawing an ”N” ball from Cage A is 4/6 = 2/3.
The probability of drawing a ”G” ball from Cage A is 2/6 = 1/3. The probability
of getting 3 ”N” balls and 3 ”G” balls from Cage A is (2/3)3 ∗ (1/3)3 = 8/729.
- For Cage B: The probability of drawing an ”N” ball from Cage B is 3/6 = 1/2.
The probability of drawing a ”G” ball from Cage B is also 1/2. The probability of
getting 3 ”N” balls and 3 ”G” balls from Cage B is (1/2)3 ∗ (1/2)3 = 1/64.
Step 2: Compare the probabilities of the outcomes from each cage.
- The probability of getting 3 ”N” balls and 3 ”G” balls is higher for Cage A (8/729)
compared to Cage B (1/64).
Step 3: Make a decision based on the higher probability outcome.
Final answer: Cage A.
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Grader

The student never mentioned or used the die roll prior probabilities (3/10 for Cage
A and 7/10 for Cage B) and made the decision solely based on the likelihood
calculation. Thus they did ignore prior information.

6. Prior Computed

Student

Step 1: Calculate the probability of drawing 6 ”N” balls from each cage: For Cage
A: (4/6)6 = 0.012, For Cage B: (3/6)6 = 0.015
Step 2: Compare the probabilities: - The probability of drawing 6 ”N” balls from
Cage B is slightly higher than from Cage A.
Step 3: Consider the initial composition of the cages: - Cage A has more ”N” balls
compared to Cage B, which could make it more likely to draw 6 ”N” balls from
that cage.
Final answer: Cage A.

Grader

The student does not calculate or even consider the prior probabilities (the an-
nounced cage probabilities).

7. Likelihood Computed

Student

Step 1: Calculate the probability of getting 2 ”N” balls and 5 ”G” balls from each
cage.
For Cage A: P(2 ”N” balls and 5 ”G” balls from Cage A) = P(2 ”N” balls from
Cage A) * P(5 ”G” balls from Cage A) = (4/10)2 ∗ (6/10)5 ≈ 0.0288
For Cage B: P(2 ”N” balls and 5 ”G” balls from Cage B) = P(2 ”N” balls from
Cage B) * P(5 ”G” balls from Cage B) = (6/10)2 ∗ (4/10)5 ≈ 0.013824
Step 2: Compare the probabilities calculated above.
Since the probability of getting 2 ”N” balls and 5 ”G” balls from Cage A is higher
than from Cage B, it is more likely that the observations were generated from Cage
A.
Final answer: Cage A.

Grader

Step 3: Observed outcome and binomial likelihood. Observed: 2 ’N’, 5 ’G’ (total
7). L(A) = 20412/78125 ≈ 0.261274 L(B) = 6048/78125 ≈ 0.077414 Likelihood
ratio L(A)/L(B) = 27/8 = 3.375000

The student attempts to compute the likelihoods, but they did not include the
proper terms (or at least did not compute using the correct values as the proper
binomial coefficient is omitted, and the numerical values do not match the correct
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likelihood calculation). Moreover, their computed numbers do not lead to the
correct likelihood ratio.

8. Posterior Computed

Grader

To determine which cage is more likely to have generated the observed outcome,
we can use Bayes’ theorem. The steps for reasoning through this problem are as
follows:
Step 1: Determine Prior Probabilities
- **Probability of using Cage A**: Since the die shows 1 through 4 for Cage A,
P (A) = 4

10 = 0.4.
- **Probability of using Cage B**: Since the die shows 5 through 10 for Cage B,
P (B) = 6

10 = 0.6.

Step 2: Determine Likelihoods - **Likelihood of drawing 5 ”N” and 1 ”G” from
Cage A**: - Probability of drawing ”N” from Cage A: 4

6 = 2
3 .

- Probability of drawing ”G” from Cage A: 2
6 = 1

3 .
- Probability of the observed outcome from Cage A:(2

3

)5
×
(1

3

)1
= 32

243 .

- **Likelihood of drawing 5 ”N” and 1 ”G” from Cage B**: - Probability of drawing
”N” from Cage B: 3

6 = 1
2 .

- Probability of drawing ”G” from Cage B: 3
6 = 1

2 .
- Probability of the observed outcome from Cage B:(1

2

)5
×
(1

2

)1
= 1

64 .

Step 3: Apply Bayes’ Theorem - We want to compare the posterior probabilities
P (A | observed outcome) and P (B | observed outcome).

Using Bayes’ theorem:

P (A | observed outcome) ∝ P (observed outcome | A) × P (A) = 32
243 × 0.4

P (B | observed outcome) ∝ P (observed outcome | B) × P (B) = 1
64 × 0.6

Calculate these products: - For Cage A: 32
243 ×0.4 = 12.8

243 . - For Cage B: 1
64 ×0.6 = 0.6

64 .

Step 4: Compare Posterior Probabilities To compare the likelihoods, it is easier to
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compare the ratios: - The ratio of the likelihood for Cage A to Cage B is:
12.8
243
0.6
64

= 12.8 × 64
243 × 0.6 = 819.2

145.8 ≈ 5.62

Since the ratio is greater than 1, Cage A is more likely to have produced the
observed outcome.

Conclusion Given that the posterior probability is higher for Cage A, it is more
likely that Cage A generated the observations.
**Final answer: Cage A.**

Grader

The student applies Bayes rule by multiplying the (miscomputed) likelihood by the
correct prior. Although they combine the two pieces of information, the incorrect
likelihood for Cage A (and thus the resulting ratio of products) leads to a numerical
error in the posterior computation. Therefore, the computation is not exact.

9. Decision Inconsistency

Student

To determine which cage is more likely to have generated the result of 3 ”N” balls
and 3 ”G” balls, let’s analyze the problem step by step.
Step 1: Determine the Probability of Choosing Each Cage - The probability of
choosing Cage A is determined by the roll of the die showing 1 through 7. So,
P (A) = 7

10 = 0.7. - The probability of choosing Cage B is determined by the roll
of the die showing 8 through 10. So, P (B) = 3

10 = 0.3.
Step 2: Calculate the Probability of the Observed Result for Each Cage
**Cage A:** - Probability of drawing ”N” from Cage A = 4

6 = 2
3 . - Probability of

drawing ”G” from Cage A = 2
6 = 1

3 . - To get exactly 3 ”N” and 3 ”G” in 6 draws,
we use the binomial probability formula:

P (3N, 3G|A) =
(

6
3

)(2
3

)3 (1
3

)3

= 20 ×
( 8

27

)
×
( 1

27

)

= 20 × 8
729

= 160
729

**Cage B:** - Probability of drawing ”N” from Cage B = 3
6 = 1

2 . - Probability of
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drawing ”G” from Cage B = 3
6 = 1

2 . - To get exactly 3 ”N” and 3 ”G” in 6 draws:

P (3N, 3G|B) =
(

6
3

)(1
2

)3 (1
2

)3

= 20 ×
(1

8

)
×
(1

8

)

= 20 × 1
64

= 20
64 = 5

16
Step 3: Use Bayes’ Theorem to Update Beliefs
We need to calculate P (A|3N, 3G) and P (B|3N, 3G). According to Bayes’ Theo-
rem:

P (A|3N, 3G) = P (3N, 3G|A) × P (A)
P (3N, 3G)

P (B|3N, 3G) = P (3N, 3G|B) × P (B)
P (3N, 3G)

The denominator P (3N, 3G) is the same for both, so we can compare the numer-
ators directly:

P (A|3N, 3G) ∝ 160
729 × 0.7

P (B|3N, 3G) ∝ 5
16 × 0.3

Calculating these: - P (A|3N, 3G) ∝ 160
729 × 0.7 = 112

729 - P (B|3N, 3G) ∝ 5
16 × 0.3 =

1.5
16 = 1.5×729

16×729 = 1.5×729
11664

Comparing these values, P (B|3N, 3G) is greater.
Conclusion
The observed result is more likely with Cage B than with Cage A, given the prob-
abilities calculated. Therefore, the draws are more likely to have come from Cage
B.
Final answer: Cage B.

Grader

Step 1: Prior from die roll.
p(A) = 7/10 = 0.7000; p(B) = 3/10 = 0.3000
Prior ratio p(A)/p(B) = 7/3 ≈ 2.333333
Step 2: Cage compositions.
Cage A: p(N—A) = 2/3≈ 0.6667, p(G—A) = 1/3 ≈ 0.3333
Cage B: p(N—B) = 1/2 = 0.5000, p(G—B) = 1/2 = 0.5000
Step 3: Observed outcome and binomial likelihood. Observed: 3 ’N’, 3 ’G’ (total
6).
L(A) = 160/729 ≈ 0.219479, L(B) = 5/16 = 0.312500
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Likelihood ratio L(A)/L(B) = 512/729 ≈ 0.702332
Step 4: Posterior components and probabilities (fraction and decimal).
p(A)*L(A) = 112/729 ≈ 0.153635, p(B)*L(B) = 3/32 ≈ 0.093750
Post(A) = 3584/5771 ≈ 0.621036, Post(B) = 2187/5771 ≈ 0.378964
Posterior ratio Post(A)/Post(B) = 3584/2187 ≈ 1.638775
Step 5: Decision.
Final answer: Cage A.

Because the correctly computed product for Cage A (≈ 0.1537) is higher than that
for Cage B (≈ 0.09375), the decision should have been Cage A. The student’s final
answer Cage B is inconsistent with the calculations.
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Appendix F Additional Figures

Figure F1: Estimated subjective posterior beliefs of GPT Subjects: 6-ball Experiments
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(b) GPT 4
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(c) GPT 4o
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Figure F2: Predicted vs Actual CCPs in Training and Evaluation Samples
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Appendix G Validation of the Automated GPT Grader

The analysis presented in Section 6 utilizes an automated approach, employing a
“teacher” GPT grader to evaluate the textual reasoning provided by the “student” GPT
models (GPT-3.5, GPT-4, and GPT-4o). To ascertain the reliability of this method, a
validation exercise was conducted. The validation methodology involved a randomly
selected subset of 150 textual responses (50 for each student model: GPT-3.5, GPT-4,
GPT-4o) from the 6-ball Wisconsin experiment dataset. These responses were
independently evaluated by three graders: a human co-author expert in the task, the
GPT-o1 model, and the primary GPT-o3-mini grader. All graders utilized the finalized
grading prompt detailed in Appendix D. Each response was assessed against the 9
binary grading flags described in Section 6.1, which were subsequently grouped into four
conceptual panels: Panel A (Data Read-in), Panel B (Bayes Rule Application), Panel C
(Posterior Calculation), and Panel D (Final Decision Consistency). Aggregate panel
error rates were calculated, where a panel error was recorded if any underlying flag
indicating an error within that panel was triggered for a given response. The error rates
reported represent the percentage of the 50 responses for each student model flagged
with an error in that panel.
Table 8 presents the comparative panel error rates generated by the three graders on
the 50-sample validation subset. The results demonstrate a high degree of concordance
between the primary automated grader (GPT-o3-mini), the advanced GPT-o1 grader,
and the human expert, particularly for Panels A and B, where error rates are nearly
identical. This confirms the automated graders’ proficiency in identifying fundamental
comprehension and conceptual errors related to Bayes’ rule application.

Table 8: Comparison of Panel Error Rates (%) Across Graders (N=50 per student model)

Student Model Panel Error Category GPT-o3-mini GPT-o1 Human
Grader Grader Grader

GPT-3.5 Panel A Data read-in errors 0 2 [2]
Panel B Bayes Rule application errors 76 76 [76]
Panel C Posterior calculation errors 96 100 [98]
Panel D Final decision inconsistency errors 6 10 [10]

GPT-4 Panel A Data read-in errors 0 0 [0]
Panel B Bayes Rule application errors 4 4 [4]
Panel C Posterior calculation errors 64 74 [82]
Panel D Final decision inconsistency errors 0 0 [2]

GPT-4o Panel A Data read-in errors 0 0 [0]
Panel B Bayes Rule application errors 0 0 [0]
Panel C Posterior calculation errors 20 18 [22]
Panel D Final decision inconsistency errors 8 12 [14]

Note: Values represent the percentage of the 50 responses flagged with at least one error within
the specified panel by the respective grader.

Minor discrepancies arise in Panels C and D, which involve assessing complex numerical
calculations and logical consistency. For Panel C (Posterior Calculation), particularly
with GPT-4 responses, GPT-o1 aligns more closely with the human grader (74% error
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rate) than GPT-o3-mini does (64% error rate, vs. 82% for human). This suggests
GPT-o1 has a superior, albeit still imperfect, ability to evaluate intricate numerical
steps. Similarly, for Panel D (Final Decision Inconsistency), GPT-o1 again tracks
human judgment more closely, especially for GPT-4o (12% vs. 14% for human,
compared to 8% for o3-mini). These differences likely stem from the challenges LLMs
face in precisely evaluating complex fraction comparisons and conversions, a task where
GPT-o1 demonstrates marginally better performance.
Despite these minor variations in evaluating complex numerical reasoning, the overall
agreement across graders is substantial. Importantly, the core qualitative findings
reported in Section 6 are robustly identified by all graders. This includes the transition
from conceptual errors (Panel B) dominating in GPT-3.5 to calculation errors (Panel C)
being more prevalent in GPT-4, followed by significant improvement in calculation
accuracy (Panel C) for GPT-4o. This validation exercise confirms that GPT-o3-mini
serves as a reliable primary grader for the large-scale textual analysis.

86


	Introduction
	Statistical Decision Theory Background
	Bayes Rule, Decision Rules, Win and Loss Functions

	Structural Econometric Model of Subject Responses
	Identification of Beliefs
	Accounting for Unobserved Subject Heterogeneity

	Optimality and revealed beliefs of human subjects
	Reanalysis of California Experiments
	Reanalysis of Wisconsin Experiments
	Reanalysis of Holt and Smith Experiments
	Conclusions from the re-analysis of human subject data

	Optimality and revealed beliefs of AI subjects
	Prompt Design for Experiments in ChatGPT
	Analysis of the Wisconsin Experiments in GPTs
	Analysis of the Holt and Smith Experiments in GPTs
	Context Effects
	Conclusions from the analysis of GPT subjects

	Analysis of Errors from AI Subject Response Text
	Error Taxonomy
	Grading Results
	Conclusion from Analysis of Textual Responses

	Conclusion
	Proof of Lemma L2
	Algorithm for Data Collection from LLMs
	Prompts used to collect data from LLMs
	Grading Prompts
	Examples of Textual Responses under Error Flags
	Additional Figures
	Validation of the Automated GPT Grader

