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Abstract

The speed at which electricity generation can transition to green energy sources depends
in part on the incentives of coal and natural gas plants to enter or exit. I examine how the
design of government subsidies and the costs of renewables shape those strategies. To do
so, I formulate a nonstationary dynamic model of generator entry and exit that incorporates
heterogeneity in entry costs and nests it within a dynamic, hourly model of competition
in the wholesale electricity market. I estimate the model using data from Texas. I find
that renewable subsidies in place in 2005–20 reduce cumulative CO2 emissions by 1.71
billion tons though 2060, largely because of a dynamic mechanism: they shift expectations
about future competition and thereby reduce the entry of new coal plants very early in
the transition. I further show that, by leveraging the dynamic mechanism, a short-horizon
subsidy can more effectively reduce carbon emissions with less tax burden by bunching
more wind investment and intensifying competition earlier for coal power plants.
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1 Introduction

The green energy transition requires a radical change in the energy sources used to generate electricity.
Government subsidies have long been used to encourage earlier and faster expansion of clean energy,
such as that derived from wind and solar energy. For example, the US provided $75 billion in tax subsi-
dies over 2005-2020 to support renewables (Kirshenberg 2018;EIA 2023b), and this is projected to reach
$220 billion by 2030 under the Inflation Reduction Act (Bistline et al., 2023). Despite the substantial
subsidies allocated to green energy, the debate about the duration of these subsidies persists, highlighted
by the frequent cycles of expiration and reauthorization before 2015 and the recent commitment in 2022
to extend them for at least 10 years.

This paper studies the design of time horizon for renewable subsidies in a nonstationary environ-
ment. The common rationale for these subsidies is to incentivize renewables, enabling economies of scale
through learning-by-doing. I deviate from this conventional perspective and explore another mechanism,
considering their long-standing nature: they can shape expectations regarding future competition and
influence the entry and exit decisions of coal and natural gas generators, even before renewables start
to expand. This dynamic mechanism can be leveraged through a careful design of the subsidy horizon
to more effectively reduce carbon emissions.

To understand how the subsidies have affected the observed transition path, and how they will affect
future outcomes, I develop an annual nonstationary equilibrium model of generator entry and exit that
accounts for long-run trends in electricity demand, natural gas prices and renewable installation costs.
The model nests a secondary dynamic model of the wholesale electricity market where all generators
compete to produce electricity each day during peak and off-peak hours, and coal and natural gas
generators are subject to start-up costs. The nested hourly model determines annual profits in the entry
and exit model. I estimate the model using data over 2005–20 from Texas. Among estimation results are
that the entry costs of coal generators are significantly larger than those of natural gas generators, and
that renewables cannibalize more profits from coal than natural gas because of the differences in their
characteristics, including fuel costs, operation and maintenance costs and flexibility.

I first use the model to evaluate the effects of a long-standing set of federal renewable subsidies
that were in place since 2005 and largely phased out between 2016 and 2020, including the production
tax credits (PTCs) and the investment tax credits (ITCs). I find that those subsidies significantly reduce
coal entry in the initial years, despite negligible renewable capacities during that period. The subsidies
result in a reduction of carbon emissions by 1.7 billion tons through 2060, with 66% of the reduction
attributed to the decreased coal expansions. This result highlights the importance of the dynamic mech-
anism driven by the forward-looking behaviors of coal and natural gas generators. Next, I examine how
the duration of the subsidies impacts their performances. I find a nonlinear relationship between the
length of the subsidies and their effects on carbon reductions because of bunching in wind investment
and the consequent shifts in competition landscape over time. Committing to subsidies with a much
shorter horizon can achieve more carbon emissions with less tax burden compared with the one actually
implemented between 2005 and 2020.

The paper proceeds as follows. In Section 2, I provide an overview of renewable subsidies in the US
and institutional details of electricity market in Texas, and also describe my data sources. The annual
data include capacities of different energy sources before 2020, along with statistics about multiple profit
shifters, including demand, input prices and engineering estimates of renewable installation costs. The
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hourly data include detailed information about electricity demand, electricity prices, generation from
wind and solar, fuel costs and outputs from all coal and natural gas generators in 2020. I use the annual
data to document the long-term trends in market forces, and use the hourly data to demonstrate the
main characteristics of electricity demand and generation from different energy sources. Both long-run
trends and those characteristics are important for generator profits; therefore, they inform the following
empirical analysis.

I introduce the nonstationary dynamic model in Section 3. I assume that coal and natural gas
generators make entry and exit decisions, and that wind and solar generators make entry decisions, all
conditional on current and (expected) future demand, costs, and subsidies. Thus, a feature of the model
is that generators anticipate and respond to not only future policy changes but also reactions to those
future changes from other generators (i.e., equilibrium feedback effects as in Holland et al. (2022)).
The model is nonstationary because it incorporates time-varying renewable entry costs (varying due to
changes in subsidies and renewable installation costs across years) and profit shifters, which together
shape the incentives of generators to enter and exit. One challenge when solving the model is that a
curse of dimensionality exists with many generators, as there are in Texas. To reduce the state space
for the entry and exit model, I adopt the nonstationary oblivious equilibrium (Benkard et al., 2008) in
which generators can make near-optimal decisions by tracking only calendar time t instead of capacities
of different types of generators.

Payoffs in the annual model are provided by an hourly model of competition in the wholesale elec-
tricity market. The hourly model is also used to evaluate carbon emissions and generation costs under
different compositions of coal, natural gas, and renewables along the transition path. I present the
hourly model in Section 4. It is important that the hourly model can appropriately reflect the opera-
tional characteristics of generators using different energy sources. This is because they determine the
competition relationship among energy sources in different hours and result in highly nonlinear profit
functions, which are necessary to support the simultaneous entry of ex ante heterogeneous generators
in equilibrium.

In the hourly model, I incorporate two aggregate shocks: residual demand (electricity demand net
of renewable generation) and natural gas prices. The volatility of these shocks impacts the operation
of coal and natural gas generators, which, in turn, determines electricity prices and generator profits.
When integrated into the annual model, the distribution of these shocks changes due to long-term trends
and variations in renewable capacities, leading to shifts in generator profits.

Turning to the operation of large coal and natural gas generators in the hourly model, I assume that
they make two decisions. They first choose whether to operate (start-up decision) subject to start-up
costs, a fixed cost incurred when a generator switches from off to on. Then, operating generators choose
their output to maximize profits within a constrained range. The literature has identified the substantial
impacts of start-up costs on generator profits and how profits would be affected by renewable expansions
(Mansur, 2008; Cullen, 2011; Cullen, 2013; Reguant, 2014; Jha and Leslie, 2021; Gowrisankaran et al.,
2022). Similarly to previous literature, I model the start-up decisions as dynamic discrete choices. How-
ever, aggregate shocks, which are typically simplified in the previous literature, and the large number
of generators create another curse of dimensionality, posing difficulties in both solving and estimating
the model. Inspired by Gowrisankaran et al. (2022), I reduce the state space by adopting the moment-
based equilibrium (Ifrach and Weintraub, 2017) for the hourly model. I assume that generators base
start-up decisions on aggregate shocks and only the previous total output from coal and gas generators,
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which effectively summarizing the high-dimensional states that those generators would otherwise need
to track.

Next, I discuss estimation methods and present estimation results in Section 5. I estimate the hourly
model using two steps. First, I estimate the hour-specific distributions of electricity demand, wind
and solar utilization factors, and natural gas prices. The estimated distributions replicate the main
characteristics of the electricity market, including the hourly cyclical patterns in electricity demand, the
intermittency of renewable generation, and the large volatility of natural gas prices. Second, I estimate
variable operation and maintenance costs and start-up costs for coal and natural gas generators by the
simulated method of moments with equilibrium constraints. It exploits the exogenous variations in
renewable generation and input prices, which drive the fluctuations in prices. The estimates deliver a
good model fit: the simulation matches well electricity generation and operating frequencies of each
type of generators, as well as electricity prices at different hours.

With annual profits from the hourly model, I then calibrate parameters related to generator entry
and exit for the annual model, ensuring that coal and natural gas capacity trends align between data and
model simulations. The calibration reveals that coal’s entry cost per MW is nearly three times greater
than that of natural gas. The positive correlation between entry costs and carbon emissions rates drives
the entry and exit decisions of coal and natural gas generators and their environmental consequences.

Using the model, I evaluate the impacts of renewable subsidies between 2005 and 2020 in Section 6.
I simulate the transition path until 2060 with and without subsidies, and compare the carbon emissions
between the two paths. The subsidies reduce carbon emissions by 1.71 billion tons through 2060;
however, instead of hastening phase-out of incumbent coal and natural gas generators, 66% of carbon
savings come from a reduction of coal expansions by 3.8GW very early in the transition, despite a
mere 0.85GW increase in wind during that time. This pattern cannot be explained by a static model.
Instead, it arises from a dynamic mechanism: Subsidies that encourage more renewables increase future
competition and, consequently, deter the entry of coal. The environmental benefits are achieved with
only a minimal reduction in economic surplus. Though subsidies drive an increase in total investment,
amounting to $20.1 billion, it is accompanied with a reduction in generation costs by $13.3 billion.
The increase in investment arises from the early adoption of renewables, which fails to capitalize on
future exogenous cost reductions. The modest decrease in economic surplus implies that these subsidies
can effectively operate with a social cost of carbon at just $3.99/ton, significantly lower than recent
estimates.

Finally, I examine how subsidies can be better designed in this nonstationary environment to ef-
fectively leverage the dynamic mechanism and improve performance. Specifically, I focus on a crucial
element of subsidy design: the time horizons. Under alternative horizons, three effects in the transition
dynamics stand out. First, the renewable investment tends to cluster in years when the subsidies are
about to expire. Second, either early bunching or later but more aggressive expansion of renewables
can effectively prevent coal entry. Third, the capacity of natural gas peaks in the middle of energy
transition, especially between 2020 and 2030. As a result of the three effects, the analysis shows a non-
linear relationship between the subsidy horizons and the their effects on carbon reductions. Compared
with subsidies actually implemented in 2005–20, a shorter-horizon subsidy with only 5 years can more
effectively reduce carbon emissions by bunching more wind investment before 2010 and significantly
increase competition for coal in the early stage of the transition.

Section 7 concludes the paper and provides directions for future research. Departing from the con-
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ventional view on learning effects resulting from renewable subsidies, I illustrate that a less-explored
dynamic mechanism—the influence of long-standing subsidies on generators’ expectations and their
subsequent entry and exit decisions—can have a significant impact on reducing carbon emissions, es-
pecially in small markets where the demand for renewable equipment does not inherently drive down
renewable costs. Due to the dynamic mechanism and the bunching in renewable investments, a nonlin-
ear relationship exists between subsidy durations and their effectiveness in reducing carbon emissions.
This partially elucidates the challenges faced by policymakers in establishing appropriate policy hori-
zons. Despite focusing on small markets, the insights are still important because there are many small
countries or regional system operators within a country that can benefit from cost reductions achieved
by scale economy elsewhere and better design their own local subsidies.

1.1 Related Literature

I contribute to a literature that examines the dynamic effects of climate policies in the electricity market
(Linn and McCormack (2019); Gowrisankaran et al., 2023; Eisenberg, 2020; Abito, 2020; Gowrisankaran
et al., 2022; Gonzales et al., 2023; Johnston et al., 2022; Elliott, 2022; Holland et al., 2022; Stock and
Stuart, 2021; Gillingham et al., 2021; Palmer et al., 2011; Borenstein and Kellogg, 2023), and more
broadly in heavy-polluting industries (for example, Ryan, 2012 and Fowlie et al., 2016). The two pa-
pers that are closest to mine are Gowrisankaran et al. (2022) and Elliott (2022), both of which exam-
ine the impacts of environmental policies on generator entry and exit in a nonstationary environment.
Gowrisankaran et al. (2022) study how uncertainty surrounding the Mercury and Air Toxics Standard
(MATS), a policy mainly targeting polluting coal power plants, affects their technology adoption and
exit of them. The time horizon of subsidies has similar effects to policy uncertainty, as it shifts the power
plants’ expectations. In my paper, instead of focusing on only one energy source, I study the equilib-
rium responses to the subsidies from not only wind and solar but coal and natural gas, which are the
main sources of carbon emissions. Elliott (2022) studies the impacts of environmental regulation on the
electricity market, focusing on the balance between reducing carbon emissions and enhancing reliability.
Elliott does not consider coal and natural gas generators’ dynamic decisions, which depend on start-up
costs, partly because generators in the market he studies are relatively small. In this paper, these dynam-
ics are explicitly modeled in the nested hourly model so that the model better reflects how much large
generators in Texas respond to renewable expansions.

The hourly model builds on an extensive literature studying competition in the wholesale electricity
market and the role of start-up costs (Borenstein et al., 2002; Bushnell et al., 2008; Wolak, 2007;
Reguant, 2014; Gowrisankaran et al., 2016; Mansur, 2008; Fowlie, 2010; Cullen, 2011; Reguant, 2014;
Jha and Leslie, 2021). I extend the literature by incorporating aggregate shocks including demand and
input prices, and incorporating the effects of energy storage, following Karaduman (2020), so that the
hourly model is rich enough to reflect how profits change along the entire transition path. My paper
also relates to the literature that employs either the competition models or reduced-form methods to
examine the short-run impacts of renewable expansions on carbon emissions and market operations
(Kaffine et al., 2013; Novan, 2015; Bushnell and Novan, 2021; Fell and Kaffine, 2018; Jha and Leslie,
2021; Gowrisankaran et al., 2016; Karaduman, 2021; Cullen, 2011). This paper contributes to the
literature by modelling dynamics to demonstrate that the sustained presence of subsidies can cause
those impacts even before renewable expansion starts. Also, this paper examines those impacts not only
in a short period but along the entire transition path.
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Finally, in both the annual model and the hourly model, I build on the recent literature approxi-
mating Market perfect equilibrium using oblivious strategies (Weintraub et al., 2008;Weintraub et al.,
2010;Benkard et al., 2008;Ifrach and Weintraub, 2017) to overcome the curse of dimensionality due to
a large number of generators. I apply the nonstationary oblivious equilibrium (Benkard, 2004) to the
annual model and employ the moment-based equilibrium (Ifrach and Weintraub, 2017) in the hourly
model.1 This provides a tractable framework for examining issues in a market with many firms, where
both long-run decisions and short-run decisions have dynamic considerations.

2 Institutional Details and Data

2.1 Renewable Subsidies in the US

In this section, I describe renewable subsidies between 2005 and 2020, and the extension of renewable
subsidies in the Inflation Reduction Act of 2022. To quickly reduce carbon emissions, significant renew-
able subsidies were established to encourage earlier adoption of renewable energy sources, including
wind and solar. The main subsidies considered in this paper PTCs and ITCs.2 The ITC is primarily qual-
ified by solar projects and is calculated as a percentage of a project’s investment cost. Before 2020, the
ITC was 30%, but it was reduced in 2020 and 2021. The PTC, typically applicable to wind projects, is
given annually and available for 10 years, in an amount equal to a specified credit rate multiplied by
the amount of electricity generated. The credit rates (2020 dollars) before 2022 are plotted in Figure
2a. They remained constant before 2017 and were gradually reduced until 2021. I convert PTC into a
lump-sum payment, similar to the ITC.3 To achieve the goal of zero emissions, the Inflation Reduction
Act of 2022 extended renewable subsidies for at least 10 years at a rate of $24.8 for the PTC and at 30%
of installation costs for the ITC. They will be phased out either in 2032 or when carbon emissions in the
power sector reach 25% of their 2022 levels, whichever comes later.

2.2 ERCOT Market

The Electric Reliability Council of Texas (ERCOT) is an independent system operator that manages the
majority of the electricity grid in Texas. It schedules electricity flow on a grid that connects 46,500 miles
of transmission lines and serves more than 26 million customers. In 2020, 45.5% of electricity generation
in ERCOT came from natural gas, 22.8% from wind, 17.9% from coal, 10.9% from nuclear, and 2.9%
from other sources including solar, hydro and petroleum coke. Residential consumption accounts for

1Both nonstationary oblivious equilibrium and moment-based equilibrium are widely used equilibrium concepts
in the literature. Recent applications of nonstationary oblivious equilibrium include Caoui (2023) and Johnston
et al. (2022). Recent applications of moment-based equilibrium include Jeon (2022), Vreugdenhil (2020), Gerarden
(2023), and Gowrisankaran et al. (2022). Gowrisankaran et al. (2022) extend it to approximate belief oligopoly
equilibrium by allowing firms to recognize the impacts of their actions on a reduced set of market states.

2Beyond tax credits, renewable portfolio standards (RPS) provide an additional incentive for adopting renewable
capacity. RPS requires that a specified percentage of the electricity suppliers sell comes from renewable resources.
Texas first adopted an RPS in 1999; it required the state to install 5 GW of new renewable energy capacity by 2015
and set a target of 10 GW of renewable energy capacity by 2025. However, the RPS was not binding because Texas
had already reached its 2025 goal in 2009; therefore, I do not consider RPS in this paper.

3For example, assume that PTC is $24/MWh and the utilization factor of a wind project is 40%. Then the PTC
for 1GW of wind capacity is $84.10 million per year. The equivalent lump-sum payment, assuming that the PTC will
last for 10 years, is therefore $841 million.
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51.3% of electricity demand in ERCOT, while the commercial sector represents 30.9%, and the industrial
sector the remaining 17.8%.

Multiple institutional features of ERCOT inform the empirical analysis. First, ERCOT separates itself
from Eastern and Western interconnections as shown in Figure A-1. This isolation makes it unnecessary
to include imports and exports in the analysis.

Second, the majority of generators in ERCOT are deregulated.4 Regulated generators are subject to
cost-of-return regulation (Abito, 2020) and operate in accordance with rates established by regulatory
authorities, rather than being responsive to wholesale prices. Deregulated generators and regulated
generators also differ in their incentives regarding when to retire their capacity(Gowrisankaran et al.,
2023).5

Third, there is no capacity market in ERCOT. A capacity market provides a subsidy for installed
capacity, and the subsidy does not depend on energy production. It is designed to guarantee a sufficient
reserve capacity to meet peak demand and prevent blackouts(Fabra, 2018). In the absence of capacity
market payments, the sole incentive for market entry is the profits generated from producing and selling
electricity.

Fourth, market concentration in ERCOT is very low. In 2020, there were 58 utilities and Herfindahl-
Hirschman Index at the utility level was 360. Consequently, the exercise of market power is limited
during most hours throughout the year, as evidenced by the significantly lower prices in comparison to
other regions. Large utilities often strategically hold off some generators to reduce output and increase
prices. Since there is no evidence of high market power, I do not consider the ownership linkage across
generators.

2.3 Data

The data contain an annual component for the entry and exit model, and an hourly component for the
wholesale competition model. The dataset is compiled from various sources, all publicly available.

The primary dataset used for the hourly model is the Continuous Emissions Monitoring System
(CEMS) database from the Environmental Protection Agency. It includes hourly electricity generation
(MWh), heat input (MMBtu) and carbon emissions (tons) for almost all thermal generators in the US.
I screen out generators in Texas but not covered by ERCOT according to their county. Based on CEMS
data, I construct several important characteristics of generators. I define the capacity of a generator
as the 95th percentile of its hourly output between 2005 and 2020; and similarly to Gowrisankaran
et al. (2022), I define a generator’s minimum output requirement as the modal generation level in hours
when output is in between the generator’s 5th and 25th percentiles throughout the sample. The heat
rate (MMBtu/MWh) is constructed as the ratio of annual total heat input to total output, and the CO2

emission rate (tons/MWh) is the average mass of carbon divided by hourly output. The remaining
characteristics, including primary energy source and technology, come from EIA form 860. 6

486% of coal and natural gas generators in my sample are owned by investor-owned utilities.
5Gowrisankaran et al. (2023) show that the speed of coal generators’ retirement is slower in regulated states

because utilities in regulated markets are authorized to charge sufficient rates to recover investment under “used
and useful” principal, which requires generators to be physically used and useful to ratepayers even if it is not
efficient to use them.

6The capacity and minimum output requirement for generators are also provided in EIA form 860; however, it
is not a one to one mapping between a unit in CEMS and a generator in EIA (Huetteman et al., 2021). Since the
main analysis is at unit level using CEMS data, I do not use capacity and minimum output requirement information
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Next, I combine the primary dataset with data about fuel costs. For deregulated power plants, plant-
level input prices are not available in EIA. So I apply average input prices in Texas to all generators. I
collect daily natural gas prices ($/MMBtu) from Henry Hub, and annual average coal prices in Texas
from EIA.

I then merge in wholesale electricity prices, electricity demand, and wind and solar generation, all
at the hourly level. I collect day-ahead wholesale electricity prices for each hour in multiple zones from
Energy Online7 and take the average across zones. Electricity load, wind output, and solar output are
from the ERCOT website. The hourly utilization factors of wind and solar are calculated as the ratio of
output to annual capacity.

Finally, the annual capacities of coal, natural gas, wind, and solar between 2010 and 2020 are
aggregated from EIA-860. The wind and solar capacity-expansion forecasts are from Department of
Energy and Asmelash and Prakash (2019) respectively. The installation costs of wind and solar between
2013 and 2020 are reported by EIA, and the forecasts in 2030 and 2050 are provided by Irena (2019)
and Olson and Bakken (2019) respectively.

2.4 Data Description

Energy Transition in ERCOT Figure 1 shows annual capacities of the main energy sources for elec-
tricity generation in ERCOT. The most remarkable change in the fuel mix is the expansion of renewables.
Wind capacity started to increase in 2005 and has accelerated since 2014.8 Solar capacity began to grow
in 2018 and increased by 10 GW within four years. Regarding fossil fuel generators, ERCOT exhibited a
steady increase of natural gas capacity.9 There was an increase in coal capacity between 2005 and 2015.
The Clean Power Plan essentially forbid the establishment of new coal generators after 2015 and coal
generators started to retire. Nuclear and hydro power account for a small share of electricity generation
in ERCOT, and they remain stable over time. Therefore, I assume that the capacity of nuclear and hydro
power will remain the same in the future.

in EIA 860.
7http://www.energyonline.com/Data/GenericData.aspx?DataId=23&ERCOT___Day-Ahead_Price
8I consider on-shore wind only. In 2020, only 2% of wind capacity came from off-shore wind farms, and their

share is projected by US Department of Energy to increase to only 4% in 2050 (Department of Energy, 2023).
9There are mainly three technologies for natural gas generators in ERCOT: combined-cycle gas turbine, open-

cycle gas turbine, and steam turbine. I focus on combined-cycle gas turbines because they account for the majority
of natural gas generators in ERCOT.
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Figure 1: Capacity by Primary Energy Source

Notes: I calculate capacity by primary energy source using data from EIA 860. Generators that temporarily disap-
pear in EIA 860 are assumed to continue operating in gap years.

Contemporary Trends Besides renewable subsidies, multiple other trends contribute to the changes
in ERCOT’s fuel mix. First, the installation costs of wind and solar fell sharply between 2005 and 2020,
and they are projected to fall even further. The main driving forces of the cost reduction are R&D
and learning by doing (Rubin et al., 2015;Bollinger and Gillingham, 2019;Covert and Sweeney, 2022).
Since demand for wind turbines and solar photovoltaic from ERCOT accounts for a tiny share of global
production, I assume the decline in installation costs is exogenous. Another technology advancement
comes from the shale gas revolution. The combination of hydraulic fracturing and horizontal drilling
significantly increased the production of natural gas and reduced the natural gas price from $9.4/MMBtu
to $2.0/MMBtu between 2005 and 2020, as shown in Figure 2d.10 The price of coal is stable over
time because most power plants and coal mines are vertically integrated and prices are determined by
long-term contracts. Finally, electricity demand has been increasing since 2005 because of continued
population growth in Texas, and demand in peak hours and off-peak hours has increased in parallel.

10The natural gas price jumped to $7.5/MMBtu in 2022 temporarily because of production freeze-offs in the first
quarter and high net withdrawals from storage, but it returned to $4/MMBtu in October(EIA, 2023a).
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(b) Installation Costs (Engineering Estimates)
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Figure 2: Contemporary Trends and Projections

Notes: Panel (a) shows historical rates of PTCs for wind projects and ITCs for solar projects between 2005 and
2020. Absent the Inflation Reduction Act, I assume that both PTCs and ITCs would have gradually phased out.
IRA 2022 extended both subsidies by at least 10 years(Bistline et al., 2023). In the empirical analysis, the PTC is
converted into a lump-sum payment as an ITC, on the assumption that the utilization factors of wind will remain
the same in the next 10 years.
Panel (b) shows engineering estimates of installation costs for on-shore wind and solar panels. Data between 2010
and 2020 come from EIA, and they are assumed to be constant before 2010. Installation costs for utility-scale solar
are projected to decrease by 50% by 2050 compared with 2020 (Olson and Bakken, 2019). For wind, I follow Irena
(2019), who estimates that installation costs of on-shore wind will be $0.8–$1.35 million/MW in 2030 and $0.6-$1
million/MW in 2050. I use the midpoints of these intervals and linearly interpolate the installation costs between
2020 and 2030 and between 2030 and 2050.
Panel (c) plots the annual averages of electricity demand in peak hours and off-peak hours. Before 2022, they are
calculated from hourly load data in each year. I project future demand according to the business-as-usual case in
Choukulkar (2022) except that I assume that demand remains constant after 2040.
Panel (d) plots annual averages of natural gas prices and coal prices. Natural gas prices before 2022 are calculated
from daily Henry Hub natural prices, and coal prices in Texas come from EIA. I assume that natural gas prices will
remain at $4.08/MMBtu after 2022.

10



Hourly Wholesale Electricity Market Electricity is distinct from other commodities because of
multiple unique characteristics of its demand and supply. These attributes play a crucial role in shaping
generators’ profits under alternative fuel mixes, and they therefore determine the incentives for entry
and exit in the long run.

First, electricity demand is inelastic with respect to electricity prices.11 Second, demand varies
cyclically over the course of a day as illustrated in Figure 3a, which displays the mean and 5th–95th per-
centiles of electricity demand by hour in 2020. Electricity demand typically peaks between 1 p.m. and
8 p.m. and plummets at night and in the early morning. Peak hours also exhibit larger variation across
days than off-peak hours. Third, given capacity, wind and solar generation are exogenous, contingent
upon the intensity of wind and sunlight. Figure 3c plots the mean and 5th–95th percentiles of utilization
factors for wind and solar. Comparing that figure with Figure 3a illustrates the intermittency of renew-
able generation. Wind generation cannot rise when demand peaks and solar generation is limited to
daytime. Additionally, the variability in wind and solar generation across days amplifies the fluctuations
in residual demand (demand net of renewable generation) faced by coal and natural gas generators.

Each hour, coal and natural gas generators make two types of decisions. First, they decide whether
to operate, taking into account the start-up cost, a fixed cost incurred when a generator switches from
being idle to producing any positive amount. This fixed cost includes substantial fuel costs and opportu-
nity costs arising from potential boiler-equipment damages. Figure 3b plots the probability of operating
by hour of the day for coal and natural gas separately. More than 80% of coal generators and about 60%
of natural gas generators choose to be on at night, when electricity prices are even lower than fuel costs.
This suggests that both coal and natural gas generators are subject to significant startup costs. However,
compared with peak hours, at night 20% less natural gas and almost no coal is idle. This suggests that
natural gas generators have much smaller start-up costs than coal generators. Second, conditional on
operating, coal and natural gas generators decide how much to produce with an increasing marginal
cost curve and suject to a limited range of output levels. The maximum output of a generator is con-
strained by capacity, which is determined at the time of construction and remains fixed over time. The
minimum output requirement sets a lower bound for output; Producing below it results in inefficiency
and equipment damages. Figure 3d plots the utilization factors of coal and natural gas generators when
they are on. As prices rise from $15/MWh at 5 a.m. to $55/MWh at 5 p.m., the utilization factor of coal
increases from 50% to 80%, about two times the response from natural gas generators. This suggests a
steeper marginal cost curve for coal than natural gas.

11Absent smart metering and real-time pricing, very few consumers are willing and able to adjust their consump-
tion to price fluctuations in the wholesale market.
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(c) Capacity Factors of Wind and Solar
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Figure 3: Operation Characteristics of the Hourly Electricity Market

Notes: All panels use data from ERCOT in 2020.
Panel (a) shows the mean and 5th–95th percentiles of electricity demand by hour of day.
Panel (b) shows mean electricity prices by hour of day and the operation probabilities for coal and natural gas
generators.
Panel (c) shows the mean and 5th–95th percentiles of capacity factors by hour of day for wind (upper panel) and
solar (lower panel).
Panel (d) shows mean electricity prices by hour of day and utilization factors conditional on operation for coal and
natural gas generators.

I categorize generators into two groups: dominant and fringe. I model the operation of individual
dominant generators in greater detail, including their dynamic start-up decisions and output decisions.
As for the fringe generators, I group all of them as a representative subject. It makes a single static out-
put decision, subject to an increasing marginal cost curve, without start-up costs or output constraints.
The distinction between dominant and fringe generators is based on their sizes and operation frequen-
cies. Smaller generators, which have significantly lower start-up costs, and generators that operate only
during a very short period in a year, are not considered for dynamic decisions. Specifically, a generator
is considered dominant if it meets two criteria: (1) capacity exceeds 100 MW and (2) it operated for
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more than 60% of all hours in at least one year between 2005 and 2020. In 2020, dominant generators
constituted 80% of all coal and natural gas generators.

Table 1 provides summary statistics of the dominant generators. I consider three types of generators:
coal, small natural gas, and large natural gas. I assume there is no heterogeneity within each type and
use the mean as the representative attribute for each type. Coal generators have considerably larger
capacity than natural gas generators. Minimum output accounts for a substantial portion of the capacity:
42% for coal generators, 66% for small gas generators and 54% for large gas generators. Natural gas
generators are typically more fuel efficient than coal generators, as measured by heat rates. Carbon
emission rates from natural gas generators are about half of coal generators’ rates, which implies that
replacing coal with natural gas will benefit the environment. However, since natural gas generators still
produce substantial carbon emissions compared with renewables, it is desirable to gradually phase them
out.

Table 1: Summary Statistics of Dominant Generators

Coal Natural Gas: Small Natural Gas: Large

Capacity (MW) 741.63 252.06 421.29
(163.05) (51.08) (100.82)

Minimum Output Requirement (MW) 313.00 167.26 228.50
(123.26) (40.08) (14.57)

Heat Rate (MMBtu/MWh) 9.89 7.58 6.98
(0.69) (1.38) (0.45)

CO2 Emission Rate (tons/MWh) 1.06 0.47 0.44
(0.06) (0.08) (0.04)

N 19 78 14

Notes: The table provides summary statistics of coal and natural gas generators whose capacity is larger
than 100MW and who operate in more than 60% of the hours in at least one year between 2005 and
2020. Natural gas generators are further categorized as small or large based on whether their capacity is
less than 300MW. Characteristics of generators are calculated based on Continuous Emissions Monitoring
System data (see Section 2.3).

3 Annual Entry and Exit Model

In this section, I present the annual nonstationary dynamic model of generator entry and exit. I employ
the model to simulate the transition paths — that is, capacities of different energy sources under different
policy scenarios.

Time is discrete with infinite horizon t = 0, 1, 2, · · · . I assume that there exists a terminal period T
after which all coal and natural gas generators are forced to exit and there is no further entry of wind
and solar. In other words, the market remains in a steady state after T .

There are five types of generators j ∈ J = {coal, small natural gas, large natural gas, wind, and solar},
and generators within each type are homogeneous and indexed by i. Generators make independent en-
try and exit decisions. Period profit of a generator with type j is determined by a deterministic function
π(Kt, zt), where Kt = (Kcoal

t ,Ksmall gas
t ,K large gas

t ,Kwind
t ,Ksolar

t ) represents the incumbent capacity of
each energy source and zt = (zdt , z

g
t , z

b
t ) are profit shifters associated with electricity demand, natural

gas prices, and the effects of energy storage. The profit function is microfounded in the hourly competi-
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tion model, which is introduced in the next section. {Kt}∞t=0 is endogenously determined by generator
entry and exit, and I assume that generators have perfect foresight about {zt}∞t=0.

The timeline before period T is as follows:

• Incumbents and potential entrants observe market state (Kt, t). Incumbent coal or natural gas
generators also privately observe independent scrap value ϕjit ∼ Fϕ,j .

• Each generator forms expectations over the evolution of future Kt.

• Based on current period profits, future profit shifters, and expectations about future capacity of
each energy source, incumbent coal and natural gas generators decide whether to exit. Incumbent
wind and solar generators never exit the market. Potential entrants of all types decide whether
to enter the market. If they enter, coal and natural gas generators pay fixed entry costs ψj , j ∈
{coal, small natural gas, large natural gas}, and the entry costs associated with wind and solar
are time varying and calculated as installation costs Ijt net of subsidies Γj

t , ψ
j
t = Ijt − Γj

t , j ∈
{wind, solar}.

• Finally, each generator acts on its entry/exit decision and Kt evolves accordingly.

Calendar time t plays an important role in the model. First, profit shifters exhibit long-run trends.
Second, the installation costs are declining over time. Third, the renewable subsidies are time depen-
dent. Generators keep track of (Kt, t) in the Markov perfect equilibrium (MPE). It is a six-dimension
object and therefore imposes a curse of dimensionality. To reduce the state space in this nonstationary
environment, instead of MPE, I adopt non-stationary oblivious equilibrium as proposed by Benkard et al.
(2008). It exploits the fact that when there are many generators, for each type, the effects on total
capacity from individual-generator entry and exit almost wash out. Therefore, when coupled with the
assumption that generators are infinitesimal,12 capacity of each energy sources follows roughly a deter-
ministic trajectory. Specifically, suppose that generators of type j use common strategy ζjt (Kt, zt), which
represents the probability of exit in period t, and there are new entrants of mass λjt (Kt, zt). Then the
expected capacity of each energy source follows

K̃coal
t = K̃coal

t−1 (1− ζcoalt ) + λcoalt

K̃gas:small
t = K̃gas:small

t−1 (1− ζgas:small
t ) + λgas:small

t

K̃gas:large
t = K̃gas:large

t−1 (1− ζgas:larget ) + λgas:larget

K̃wind
t = K̃wind

t−1 + λwind
t

K̃solar
t = K̃solar

t−1 + λsolart ,

(1)

with K̃i
0 = Ki

0. Instead of tracking (Kt, t) and forming expectations about Kt, generators can approxi-
mate future profits using K̃t and therefore make near-optimal decisions by tracking only calendar time
t.

The following Bellman equation characterizes the dynamic programming problem of an incumbent
coal or natural gas generator:

12I assume generators are infinitesimal to avoid the integer problem in the state transition process, similarly to
Cullen and Reynolds (2023).
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V i
t (ϕ

j
it) = Π

j(i)
t (K̃t, zt) + max{ϕjit, βE[V i

t+1(ϕ
j
it+1)]}. (2)

The ex ante value function (before the realization of ϕjit), V j
t , is given by

V j
t = Πj

t (K̃t, zt) + ζjtE[ϕjit|ϕ
j
it ≥ βV j

t+1] + (1− ζjt )βEV
j
t+1,

where ζjt = E[I{ϕjit ≥ βV j
t+1}] represents the probability of exit in period t, with I{·} being an indicator

function. I further assume that scrap values follow independent exponential distributions with mean ϕ
j
.

Then,

ζjt = exp{−
βV j

t+1

ϕ
j

}

and
E[ϕjit|ϕ

j
it ≥ βV j

t+1] = ϕ
j
+ βV j

t+1.

I assume that there is a large pool of potential entrants for each energy source. If each potential
entrant plays a symmetric mixed entry strategy, following Weintraub et al. (2008), the capacity of new
entrants is approximated by the Poisson distribution with a state-dependent mean, λjt , which is deter-
mined by free-entry conditions. Specifically,

ψj
t ≤ βV j

t+1 implies λjt = λ

ψj
t = βV j

t+1 implies λjt ∈ (0, λ)

ψj
t ≥ βV j

t+1 implies λjt = 0,

(3)

where λ, the cap of capacity from new entrants in each year, is assumed to be the same across energy
sources.13

The nonstationary oblivious equilibrium is defined as follows. It contains a set of strategies {ζjt , λ
j
t}Tt=0

for j ∈ J such that in each period t,

(a) ζjt solves the Bellman equation (2), and

(b) λjt satisfies free-entry conditions (3).

The algorithm to solve for the equilibrium follows Benkard et al. (2008) closely. I start from a set
of initial guesses of {ζjt , λ

j
t}Tt=0 for j ∈ J and calculate the expected transition path following (1) and

profits Πj(K̃t, zt), j ∈ J . Next, I solve the Bellman equations (2) by backward induction and check
the free-entry conditions (3). I then update the exit strategies {ζjt }Tt=0 based on strategies from two
consecutive iterations and update the entry strategies {λjt}Tt=0 depending on the extent of the violation of
the free-entry conditions. An equilibrium is solved if exit strategies {ζjt } from two consecutive iterations
are close enough and free-entry conditions are satisfied by {λjt} for all j ∈ J .

13The inclusion of the cap for capacity from new entrants is motivated by the constraint posed by the interconnec-
tion queue. To build a new power plant and connect it to transmission lines, new entrants first need to go through
an interconnection queue in which the system operator conducts studies to evaluate their impacts on the grid. Only
a few studies can be conducted, which sets a limit on the amount of newly built capacity in each year. Even though
it can take on average four years for a generator to get through the interconnection queue in the US, the process is
much faster in ERCOT (Clifford, 2023). Therefore, I assume that time to build is only one year.

15



4 Hourly Model of the Wholesale Electricity Market

In this section, I describe the hourly model of competition in the day-ahead wholesale electricity market.
Each hourly model corresponds to one period in the entry and exit model. It is associated with a specific
value for the profit shifters, zt, and a fixed set of incumbent generators with capacity Kt. The model
serves two purposes. First, the annual profits are calculated by simulating the model and aggregating
hourly profits for a year. Annual profits under model simulations with alternative (Kt, zt) serve as payoffs
in the entry and exit model. Second, carbon emissions and generation costs are evaluated by solving for
the hourly model along the transition paths out of the entry and exit model.

The model is designed to capture the main characteristics of the electricity market as presented in
Section 2.4. I collapse 24 hours in a day into two model hours: one peak hour and one off-peak hour.
Electricity demand and renewable generation are random variables with different distributions at peak
hours and off-peak hours. In each hour, dominant coal and natural gas generators first decide whether
to operate taking into account start-up costs,14 and then choose output to maximize profits with an
increasing marginal cost and subject to a limited ranges of output.15

I model the the start-up decision as a dynamic discrete choice problem in spirit of Rust (1987),
similar to Cullen (2011) and Gowrisankaran et al. (2022).16 I deviate from them in two ways. First, de-
mand and renewable generation enter the market as aggregate shocks. They shape the residual demand
faced by coal and natural gas generators, impacting both their operation and profits. Incorporating the
aggregate shocks enables me to analyze how shifts in demand and the growth of renewable capacity
affect generator profits when integrating the hourly model into the annual model. Second, rather than
assuming a constant marginal cost and limiting the output to be either at full capacity or at the minimum
requirement, I consider an increasing marginal cost and allow for any generation level ranging from the
minimum output requirement to the full capacity, similar to Reguant (2014). My specification allows the
marginal cost to increase at different rates for coal and natural gas generators, as suggested in Section
2.4. This difference has implications for how generators’ profits would change with price reductions
from renewable expansions.17

One challenge when solving for the model is the curse of dimensionality from the large number of
generators in the market. When deriving the optimal strategy of choosing whether to operate, generators
form expectations about future prices by tracking aggregate shocks, including residual demand and
natural gas prices, and the number of generators of each type operated in the previous hour. This

14Collapsing 24 hours into 2 model hours implicitly assumes that generators commit to keeping the same oper-
ation status within each window. This is consistent with data showing that it is rare for a generator to switch its
status more than once within a day. It also should be nonproblematic for the counterfactuals because variations
in demand and renewable generation occur mainly across days and between peak hours and off-peak hours. The
variability within the peak-hour and off-peak-hour time windows is limited.

15I do not consider ramping costs — that is, adjustment costs when generators change their output levels rapidly,
conditional on operation. Reguant (2014) finds that ramping costs are not significant for coal or CCGT generators
under a specification with an increasing marginal cost.

16Other studies modelling start-up costs include Reguant (2014) and Jha and Leslie (2021). Reguant (2014)
models the role of start-up costs in the context of multi-unit auctions. Jha and Leslie (2021) model start-up costs as
mainly fuel costs, which may be appropriate for natural gas generators but is probably inappropriate for large coal
generators, where the opportunity costs from equipment damages can be significant.

17Both the slope and intercept of marginal cost affect how generators’ profits change in response to a price
adjustment. Consider a firm with a quadratic marginal cost C(q) = aq + bq2 in a competitive market with the price
p. The impact of a price change on the generator’s profit is given by ∂π

∂p
= p−a

2b2
. The effect is influenced by both

parameters, a and b.
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creates a large state space with a complicated transition rule. I reduce the state space by solving for
a moment-based equilibrium (Ifrach and Weintraub, 2017). Instead of tracking the operational status
of all generators, I assume that generators make their start-up decisions based on total output from
dominant coal and natural gas generators in the previous hour, Qh−1, which as a moment, summarizes
the information about how many generators operated in the previous hour.

Next, I lay out the details of different components of the hourly model.

Electricity Demand There are an infinite number of hours within one period, h = 1, 2, 3, · · · ,18 with
two types lh ∈ {O,P} alternating, where O stands for off-peak hours and P represents peak hours.

Electricity demand dh is assumed to be inelastic with respect to electricity price and given by

dh = zdt d
lh
+ εdh,

where d
lh is the mean electricity demand for hour type lh and εdh follows an AR(1) process with hour-

type-specific coefficients:

εdh = ρd,lhεdh−1 + zdt σ
d,lhηdh

ηdh ∼ N (0, 1)

ηdh ⊥ εdh′ , h ≥ h′.

In each period the demand shifter zdt is fixed, but across periods both means and standard deviations of
electricity demand change in both peak and off-peak hours.

Generation from Wind and Solar Wind and solar capacities, KW
t and KS

t , remain fixed within
a period. The utilization factor of wind in hour h, ωW

h , is a random variable with similar stochastic
structure to electricity demand:

ωW
h = ωW,lh + εWh

εWh = ρW,lhεWh−1 + σW,lhηWh

ηWh ∼ N (0, 1),

where ωW,lh is the mean during hours of type lh, and ρW,lh and σW,lh are hour-type-specific AR(1)
coefficients. The utilization factor of solar in hour h, ωS

h , follows

ωS
h = ωS,lh + σS,lhεSh

ϵSh ∼ N (0, 1),

where ωS,lh is the mean during hours of type lh and σS,lh is the hour-type-specific standard deviation of
shocks to solar utilization factors. There is almost no persistence in εSh across hours for solar in the data,
therefore, I assume away the AR(1) structure for solar.

18Even though the purpose of the hourly model is to collect annual profits, I assume an infinite horizon to avoid
non-stationarity. It is computationally difficult to compute models combining both non-stationarity and aggregate
shocks.
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Given realizations of ωW
h and ωS

h , without curtailment, electricity generation from wind and solar is
given by

qWh = KW
t × ωW

h

qSh = KS
t × ωS

h .

In the absence of energy storage, electricity supply from renewables in hour h comprises the gener-
ation from wind and solar in that hour (qWh and qSh ). With zero marginal costs for wind and solar, they
meet the electricity demand first, leaving a residual demand for coal and natural gas generators as

drh(0) = dh − (qWt + qSt ),

where drh(0) represents the residual demand when energy storage level zbt = 0. The introduction of
energy storage, as measured by a parameter zbt , smooths the fluctuations of residual demand, drh(z

b
t ),

across hours. When generation from renewables exceeds demand, I assume that residual demand be-
comes zero and wind and solar are curtailed proportionally to their output. The details of energy storage
and curtailment are given in Appendix II.

Fuel Prices I assume that coal prices are fixed at pc and natural gas prices follow an AR(1) process:

pgh = zgt µ
g + ρgpgh−1 + zgt σ

gεgh, εgh ∼ N (0, 1).

where µg and σg are fixed in all periods when nested in the entry and exit model, and the natural gas
price shifter, zgt , changes both the mean and volatility of natural gas prices across periods.

Electricity Generation by Fringe Generators Small or infrequently operating generators are clas-
sified as fringe generators. I assume that these fringe generators are homogeneous and not constrained
by either minimum output requirements or capacity limitations. Similarly to Butters et al. (2021), I
assume that the marginal cost of fringe generators has an exponential form:

mcf = exp{cf0 + cf1Q
f
h + σfηfh}, ηfh ∼ N (0, 1),

where Qf
h is the output from fringe generators in hour h, and ηfh is an unobservable that captures any

hour-specific market-level shocks that can affect electricity prices. ηfh is assumed to be independent from
all other random variables. Given electricity price ph, the output from fringe generators is given by

Qf
h =

log ph − cf0 − σfηfh
cf1

.

Electricity Generation from Dominant Generators: Production Decisions In each hour,
dominant generators first decide whether to operate (the start-up decision) taking into account startup
costs, and then they decide how much to produce (the production decision). Denote the set of dom-
inant generators that operate in hour h as G+

h , which is determined by generators’ start-up decisions.
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Generator i of type j in G+
h chooses output to maximize its profit:19

πih = max
qih

phqih − Cj(qih; ηih)

qj ≤ qih ≤ qj ,

where qih is the output of generator i in hour h. Generator i’s output is constrained by the minimum
output requirement qj and capacity qj . Cj(qih; ηih) is the cost of producing qih and I assume that it has
the following functional form:

Cj(qih; ηih) = pjh ×Hjqih︸ ︷︷ ︸
fuel costs

+(µj + σc,jηih)qih +
αj

2qj
(qih − qj)2+︸ ︷︷ ︸

VO&M costs

ηih ∼ N (0, 1),

where (qih− qj)+ = max{qih− qj , 0}. The cost consists two parts. First, fuel costs are the product of fuel
price pjh ($/MMBtu) and heat rate Hj (MMBtu/MWh), which measures the fuel efficiency of generators
of type j. Second, all costs except fuel costs are variable operational and maintenance (O&M) costs.
They are assumed to be quadratic; Therefore, generators have a linearly increasing marginal cost. µj ,
associated with fuel cost and a cost shock ηih, determines the intercept of marginal cost. αj , associated
with capacity qj , determines the slope of marginal cost. Appendix III derives the optimal output qih
given electricity price ph and expected profit E[πih|ph] when ηih is integrated out.

Equilibrium Price The equilibrium price in each hour is determined by balancing demand and elec-
tricity generation from all energy sources:

∑
i∈G+

h

qih(ph; ηih) +Qf
h(ph) = drh(bt)

The operational characteristics of dominant generators and inelastic demand present challenges in
establishing equilibrium prices. I will discuss these challenges in two cases:

Case I: Excess Supply from Dominant Generators
When the combined minimum output of all dominant generators committed to production surpasses

the residual demand (
∑

i∈G+
h
q
ih

≥ drh(bt)), the equilibrium price may not exist because the electricity
demand is inelastic to the electricity price. In such a case, I assume that excess electricity supply is
freely disposed of, causing the electricity price to drop to its lowest possible value.20 However, such
scenarios are rare because G+

h is endogenously determined by generators’ equilibrium start-up strategies
and generators aim to avoid situations where they would incur losses.

Case II: Insufficient Supply from Dominant Generators
Next, consider the case in which the residual demand is not fulfilled when all operating dominant

generators produce at their minimum output requirements (
∑

i∈G+
h
q
ih
< drh(bt)). In this case, challenges

regarding the existence of equilibrium prices emerge due to the output constraints of dominant gener-
ators. Limited by their capacity, it may be insufficient for dominant generators to meet all electricity

19Type j is linked to generator i. I represent it as j when there is no ambiguity.
20I set the lowest value of the electricity price as the intercept of the fringe marginal cost. Setting the lower bound

at zero generates almost the same results.
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demand. To overcome this, I assume that the representative fringe generator has no capacity constraint.
So the fringe can always fill the gap between demand and generation from dominant generators.

A more subtle challenge in establishing the equilibrium price comes from minimum output require-
ments, which result in multiple flat steps in the aggregate electricity supply curve. I address this issue
by incorporating idiosyncratic shocks, ηih, to the intercept of marginal cost, reducing the length of those
plateaus. In any case where the demand realization falls within the middle of a flat step, residual demand
is adjusted by curtailing renewable generation to achieve equilibrium.21

An alternative method to tackle the challenges associated with establishing equilibrium prices is
to consider the possibility of blackouts. However, I implicitly assume away blackouts because of the
flexibility of fringe supply. Nonetheless, my model can provide insights into the reliability issues in the
electricity market by analyzing electricity prices. In situations where there’s inadequate capacity from
dominant generators, electricity prices can experience sharp increases.

Electricity Generation from Dominant Generators: Start-Up Decisions Before discussing the
details of start-up decisions, I lay out the timing assumptions.

• At the beginning of each hour, electricity demand dh, renewable productivity ωW
h , ωS

h , and natural
gas price pGh are realized.

• Observing the total output from dominant generators in the previous hour (Qh−1), the electricity
demand (dh), the capacity factor of wind (ωW

h ), the capacity factor of solar (ωS
h ), and the natural

gas price (pGh ), each dominant generator decides whether or not to operate, as captured by the
indicator variable, χih, after observing an idiosyncratic shock associated with each action, εχih.

• Marginal cost shocks associated with dominant generators, ηih, and fringe generators, ηfh are
realized. Fringe generators and operating dominant generators choose their output and earn
profits.

• Electricity is consumed, and the market moves to the next hour.

I focus on the moment-based equilibrium in which generators make start-up decisions using strate-
gies based on states {χih−1, lh, d

r
h, p

g
h, Qh−1}. The following Bellman equation characterizes the dynamic

programming problem when making start-up decisions:

V lh
i (χih−1, d

r
h, p

G
h , Qh−1) = Eεih max{σjε

χih−1

ih + βW j,lh
0 (drh, p

G
h , Qh−1),

σjε
χih−1

ih +Πj(drh, p
G
h , Qh−1)− κjI{χih−1 = 0}+ βW j,lh

1 (drh, p
G
h , Qh−1)},
(4)

where χih is an indicator function that takes the value of 1 when a generator operates. Πj(drh, p
G
h , Qh−1)

is type-j generator’s perceived expected profits in hour h. κj is the start-up cost incurred when a gen-
erator of type j switches from off to on. ε = {ε0ih, ε1ih} follow independent type I extreme value distri-
butions with mean 0 and scale parameter σj . W j,lh

0 and W j,lh
1 are choice-specific value functions as in

21Each step is associated with at most one generator due to the idiosyncratic shock ηih. Consequently, only a
small margin of curtailment from wind generation is needed to reach an equilibrium. The minimum wind capacity
in periods I study is 1.7GW, sufficient for the adjustment.
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Rust (1987). They give continuation values associated with operation decisions in hour h. Given the
distribution assumption for ε, W0 and W1 are given as follows:

W j,lh
1 (drh, p

g
h, Qh−1) = E

lh+1|lh
dr
h+1,p

g
h+1,Qh

V
lh+1

i (1, drh+1, p
g
h+1, Qh)

= E
lh+1|lh
dr
h+1,p

g
h+1,Qh

σj log{exp{
Πj(drh+1, p

g
h+1, Qh) + βW

j,lh+1

1 (drh+1, p
g
h+1, Qh)

σj
}

+ exp{
βW

j,lh+1

0 (drh+1, p
g
h+1, Qh)

σj
}}

W
j,l(h)
0 (drh, p

g
h, Qh−1) = E

lh+1|lh
dr
h+1,p

g
h+1,Qh

V
lh+1

i (0, drh+1, p
g
h+1, Qh)

= E
lh+1|lh
dr
h+1,p

g
h+1,Qh

σj log{exp{
Πj(drh+1, p

g
h+1, Qh)− κ+ βW

j,lh+1

1 (drh+1, p
g
h+1, Qh)

σ
}

+ exp{
βW

j,lh+1

0 (drh+1, p
g
h+1, Qh)

σj
}},

where the expectation is taken over a perceived transition kernel that specifies the perceived distribution
of drh+1, p

G
h+1, Qh given drh, p

G
h , Qh−1 when the market moves from hour type lh to lh+1.

Next, I discuss the perceived transition kernel and the perceived expected profits. One challenge
when using the moment-based equilibrium is that the moment Qh−1, which summarizes the operation
status of all generators, might not follow a Markov process because part of the information is lost when
aggregating individual operation status to total output. Following Gowrisankaran et al. (2022) and
Barwick et al. (forthcoming), I approximate the transition process of Qh−1 by a parametric AR(1) pro-
cess. Specifically, I assume that the perceived transition rule of Qh, conditional on drh and pgh, follows a
deterministic rule:

Qh = θlh0 + θlh1 d
r
h + θlh2 p

g
h + θlh3 Qh−1, lh ∈ {O,P}. (5)

Though simple, the AR(1) specification is able to capture the effect of residual demand and natural
gas prices on dominant generation and, therefore, the electricity price. Qh−1 captures the possible state
dependence due to the start-up cost.

Given the perceived transition kernel, the perceived single-hour profit of type-j generators is then
given by

Πj(Qf
h) = E[E[πih|ph(Qf

h; η
f
h)]|Q

f
h],

where the inner expectation is taken over the perceived transition kernel and the transition of drh (since
Qf

h = drh −Qh), and the outer expectation is taken over ηfh .22

Definition of the Moment-Based Equilibrium A moment-based equilibrium consists of a set of
start-up strategies χlh

ih(χih−1, d
r
h, p

g
h, Qh−1) for generator i of type j ∈ {coal, small natural gas, large natural gas}

and a set of belief parameters θlh = {θlh0 , θ
lh
1 , θ

lh
2 , θ

lh
3 } for lh ∈ {O,P} such that

(a) χlh
ih(χih−1, d

r
h, p

g
h, Qh−1) solves the Bellman equation (4)

22I calculate the outer expectation using 8th-order Gauss-Hermite quadrature.
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(b) θlh , lh ∈ {O,P} are consistent with simulated data generated from χlh
ih(χih−1, d

r
h, p

g
h, Qh−1)

Algorithm I describe the algorithm used to compute the moment-based equilibrium. The algorithm
is similar to Ifrach and Weintraub (2017) and Gowrisankaran et al. (2022). I start from a set of can-
didate belief parameters θlh , lh ∈ {O,P}. Then, I compute the transition matrix of (drh, p

g
h, Qh) by

discretizing the AR(1) process associated with θlh , lh ∈ {O,P}. Next, I solve the start-up strategies
χlh
ih(χih−1, d

r
h, p

g
h, Qh−1) as solutions to the Bellman equation (4). I then forward simulate the start-up

decisions and output decisions of all generators in the market and collect Qh for a large-enough number
of hours H. Next, I update the belief parameters by estimating regressions of Qh on drh, p

g
h and Qh by

employing OLS, separately for peak hours and off-peak hours. An equilibrium is achieved if the belief
parameters in two consecutive iterations are close enough.

Annual Outcomes Having solved for the moment-based equilibrium, I calculate the annual profits of
different types of generators as well as total generation costs and carbon emissions. The calculation is a
by-product of the forward simulation step in the algorithm solving for the equilibrium.23. For a dominant
generator i, the profit is given by

Πj
t = E[

365×2∑
h=1

(phqih − Cj(qih; ηih))Hh − κjI{χih = 1, χih−1 = 0}+ εχih

ih )],

where the expectation is taken over different simulation draws of {ηfh , ηih, ε
χih

ih }, and Hh, which maps
one peak hour to 8 data hours and one off-peak hour to 16 data hours. The profits have four components,
revenue, generation costs, start-up costs, and a revenue correction term for the type I extreme value
shocks.

The profits of wind and solar are given as follows:

ΠW
t =

365×2∑
h=1

phq
W
h Hh − CW

ΠS
t =

365×2∑
h=1

phq
S
hHh − CS ,

where qWh and qSh are output from wind and solar, and CW and CS are annual fixed O&M costs for
wind and solar.

Total generation costs include fuel costs, variable O&M costs and start-up costs for dominant gen-
erators, annual fixed costs for wind and solar, as well as costs for fringe generation. The costs for the
representative fringe generator is

C fringe
t =

365×2∑
h=1

Hh

∫ Qf
h

0

exp{cf0 + cf1q + σfηfh}dq

=
exp{cf0 + σfηfh}

cf1
(exp{cf1Q

f
h} − 1).

23I take the average of various outcomes across multiple 730-hour windows and generators of the same type in
the forward simulation step of the solution algorithm for the moment-based equilibrium.
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Annual carbon emissions from electricity generation of type-j generators are given as follow:

Qj,carbon
t =

∑
i∈G+

h

τ j
365×2∑
h=1

qihHh

where τ j is the emission rate of CO2(tons/MWh) from generators of type j. Electricity generation from
fringe generators also produce carbon emissions. I assume that fringe generators have the same carbon
emission rates as natural gas generators.

5 Estimation and Calibration

In Section 5.1, I discuss the identification and estimation of parameters in the hourly model. Then,
I present the estimation results and model fits. In Section 5.2, to illustrate the effects of competition
between different energy sources, I present the first-order approximation of the profit surface, which is
trained by a deep neural network. Finally, in Section 5.3, I discuss how I calibrate parameters in the
annual entry and exit model.

5.1 Estimation of Generation Costs and Start-up Costs

I apply the hourly model to ERCOT data in 2020. I first collapse the original data across 24 hours
in a day into 2 model hours, as detailed in Appendix I. I then conduct the estimation in two steps.
First, I estimate distributions of aggregate market variables including electricity demand, wind and solar
utilization factors, and natural gas prices. In the second step, I jointly estimate generation costs and
start-up costs associated with dominant generators and marginal costs associated with fringe generators
via simulated method of moments. The parameters to be estimated in the second step are summarized
in Ξ:

Ξhourly = {αj , µj , σc,j︸ ︷︷ ︸
generation costs

, κj , σj︸ ︷︷ ︸
start-up costs

, cf0 , c
f
1 , σ

f︸ ︷︷ ︸
fringe marginal costs

}

j ∈ {coal, small natural gas, large natural gas}

The estimation procedure is nested. In the inner loop, I solve for the moment-based equilibrium, simulate
the model for T periods, and calculate moments from the simulated data. In the outer loop, I search for
the parameters that best match simulated moments and data moments.

5.1.1 Identification

I discuss in this section the identification of cost parameters. Parameters in the O&M costs are identified
from the first-order condition of dominant generators’ profit-maximization problem. As shown in Ap-
pendix III, without output constraints, the utilization factors q∗ih/q

j are proportional to electricity prices
ph net of fuel costs pjhH

j when a generator is on. By focusing on observations when the output is strictly
in between qj and qj , the positive correlation between electricity prices and utilization factors identifies
αj , and the average and standard deviation of utilization factors help identify µj and σc,j .
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The identification of start-up costs is similar to Cullen (2011). First, consider generators’ start-
up decisions without start-up costs and the associated type I extreme value shocks. In this case, the
start-up decisions follow a cutoff rule (Rust, 1987): regardless of previous operation status, genera-
tors will choose to operate if the expected profits are above zero; otherwise, they are off. However,
with start-up costs present, generators remain operating when the expected profits are moderately
negative to avoid future start-up costs. Therefore, κj are identified by the differences in probabil-
ity of operating when generators have the same expected profits but different operation status in the
previous hour. Given that fuel costs account for a substantial share of start-up costs, I parameterize
κj , j ∈ {small natural gas, large natural gas} as

κj = κj0 + κj1p
g
h.

κj1 is identified by the difference in the probability of operating under various natural gas prices. The
scale parameters σj can be identified by comparing the operational probabilities in the model incorpo-
rating those unobserved shocks with the probabilities in a deterministic model. Finally, the marginal cost
curve of the representative fringe generator is identified by the correlation between the fringe output
and the electricity price.

The moments used in the estimation are (1) the mean and standard deviation of utilization fac-
tors across different residual demand realizations when generators operate within nonbinding output
constraints; (2) the probability of a generator turning on after being off, across five residual demand
realizations; (3) the same probability as in (2), but for generators operated in the previous hour; (4) the
probability of a generator turning on after being off, across different natural gas prices; (5) the prob-
ability of a generator operating, separately for peak and off-peak hours; (6) electricity prices and total
output from different types of generators, separately for peak and off-peak hours.

5.1.2 Estimation Results

Electricity Demand, Renewable Productivity, and Natural Gas Prices Details for my results
are presented in the Appendix. Table A-1 summarizes electricity demand, and wind and solar utilization
factors by hour. Despite being collapsed into two hours, they are consistent with the descriptions in
Section 2.4. Tables A-2 and A-3 report estimates of hour-specific AR(1) processes for shocks to elec-
tricity demand and wind utilization factors. The correlation coefficient between ηdh and ηwh is 0.0485,
supporting the assumption that demand shocks ηdh and shocks to wind production ηwh are independent.

Natural gas prices exhibit remarkable persistence, characterized by an AR(1) coefficient of 0.99. The
accompanying constant of 0.02 indicates an average natural gas prices of approximately $2/MMBtu in
2020. The standard deviation of AR(1) residuals is 0.056, corresponding to a volatility of natural gas
prices that is at approximately $0.4/MMBtu. This underscores the substantial fluctuations in natural gas
prices.

Estimate of Cost Parameters Table 2 reports estimates of cost parameters. The estimates are
consistent with the main characteristics in the operation of coal and natural gas generators as discussed
in Section 2.4. The slope of marginal costs, which are determined by αj and capacity qj , is $0.014/MWh2

for natural gas generators, approximately twice as high as for coal ($0.0064/MWh2). The values of
αj and µj jointly determine O&M costs. At maximum capacity, O&M costs for small natural gas and
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coal generators are $5.63/MWh and $6.10/MWh, close to the engineering estimates of variable O&M
costs in Mann et al. (2017) which are $4.73/MWh and $6.33/MWh for natural gas and coal generators
respectively.

The estimated start-up cost associated with coal generators is $0.69 million per start-up, similar to
Gowrisankaran et al.’s (2022) estimate of $0.6 million for the start-up cost for 600MW coal generators.
Start-up costs are $0.03 million for small generators and $0.09 million for large generators. Those
costs are comparable with estimates from Cullen (2011) and Reguant (2014). They are very significant,
though much smaller than those for coal generators.

The intercept of fringe generators is estimated to be 2.13. Ignoring shocks to the fringe marginal
cost, it sets a lower bound for electricity prices at $8.4/MWh when there is no fringe generation. When
fringe generation increases by 1GW, the marginal costs of fringe generators, and therefore electricity
prices, increase by 14.7%.

Table 2: Estimation Results of Cost Parameters

Parameter Description Gas:Small Gas: Large Coal

Panel A. Dominant Generators

αj parameters in the slope of marginal costs ($/MWh) 3.531 0.562 4.727
µj constant part of marginal costs ($/MWh) 5.427 9.108 5.308
σc,j standard deviation of marginal cost unobservables ($/MWh) 1.287 1.132 0.447
κj0 constant part of startup costs (million $) 0.022 0.000 0.691
κj1 slope of startup costs (million $) 0.004 0.043
σj scale parameters of T1EV shocks (million $) 0.014 0.024 0.078

Panel B. Fringe Generators

cf0 intercept of fringe marginal costs 2.128
cf1 slope of fringe marginal costs (per GW) 14.722
σf standard deviation of fringe marginal costs 0.1296

Notes: The table reports estimates of generation costs and start-up cost associated with dominant generators and estimates
of marginal costs of fringe generators, based on hourly data in ERCOT in 2020. Standard errors are to be added.

Table A-4 presents profits of different types of generator. Coal generators earn the most annual
profits, $19.73 million. Small natural gas generators are the most profitable per MW because natural
gas prices were extremely low in 2020.

Finally, I calibrate annual fixed O&M cost as $0.035 million/MW (Stehly et al., 2020; Lantz et al.,
2016) for on-shore wind and $0.017 million/MW for distributed solar panels (Walker et al., 2020,Wiser
et al., 2020).

5.1.3 Model Fit

To evaluate the model’s performance, I compare data moments with the simulated moments. The exer-
cise shows that, despite its parsimonious specification and limited heterogeneity, the model adequately
captures the main operational characteristics and approximates aggregate market outcomes. Table 3
compares means and standard deviations of electricity prices and outputs from each type of generator
in the data and the average in the model simulations, separately at peak and off-peak hours. They align
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with each other closely.

Table 3: Electricity Prices and Generation by Type of Generators

Off-Peak Hours Peak Hours

Data Model Data Model

Electricity Price ($/MWh) 18.23 20.42 34.22 31.77
(5.29) (3.38) (20.54) (21.69)

Electricity Generation: Small Gas (GWh) 10.56 11.40 14.26 14.25
(3.24) (4.26) (2.90) (4.76)

Electricity Generation: Large Gas (GWh) 2.52 2.16 3.46 3.26
(1.35) (1.23) (1.59) (1.87)

Electricity Generation: Coal (GWh) 7.29 6.92 9.51 9.65
(1.60) (2.72) (2.32) (3.21)

Notes: The table provides a comparison of the means and standard deviations (in parenthe-
ses) for electricity prices and outputs between the observed data and the averaged results
from model simulations. This comparison is presented separately for both peak hours and
off-peak hours.

Table A-5 presents means and standard deviations of utilization factors under different realizations
of residual demand. They are calculated when generators operate and neither the minimum output
requirement nor capacity is binding. The model reflects the positive correlation between electricity
generation and residual demand. It fits particularly well under low and moderate residual demand
realizations, which account for the majority of hours.

Table 4 shows that the model also predicts well the start-up decisions of generators. Model simu-
lations perfectly match data for the start-up frequencies. For coal and large natural gas generators, it
also fits well the difference of operational probabilities at peak and off-peak hours. One caveat is that
the model underestimates that difference for small gas generators. Table A-6 shows the operational
probabilities under different previous operational statuses, by different realizations of residual demand.
The model effectively captures the disparities in the operational probabilities under different previous
status, especially when realizations of residual demand are low or moderate. However, it tends to over-
estimate the probability of continuing to operate in two consecutive hours with high residual demand
realizations. Table A-7 also presents the probability of switching from off to on, by different realizations
of natural gas prices.
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Table 4: Start-up Frequency and Probability of Operation

Gas: Small Gas: Large Coal
Data Model Data Model Data Model

Pr[start up] 0.10 0.11 0.08 0.08 0.01 0.01
Pr[on|off-peak hours] 0.63 0.69 0.55 0.59 0.66 0.64
Pr[on|peak hours] 0.80 0.76 0.66 0.64 0.83 0.83

Notes: The table presents a comparison between data and model simulations in
terms of the probability of start-up — that is, the share of hours when a generator
switches from off to on and the probability of operation at off-peak and peak hours.
compares between data and simulations the probability of start up, that is the share
of hours when a generator switches from off to on, and the probability of being on
during off-peak hours and peak hours.

5.2 Profit Surfaces Linking the Hourly Model with the Annual Model

To compute annual profits within various states (Kt, zt) for the annual entry and exit model, it is nec-
essary to solve the hourly model T times in each iteration when solving for the nonstationary oblivious
equilibrium. This iterative process may require numerous iterations for the model to reach convergence.
Although solving the hourly model individually is efficient, the cumulative time required can become
quite substantial.

To accelerate the computation of annual profits while preserving the richness of dynamics in the
wholesale electricity market, I solve the hourly model across an extensive range of predetermined values
for (Kt, zt), as indicated in Table A-8. It’s worth noting that the bounds for each variable are chosen
generously to ensure that the capacity of each energy source in all counterfactual scenarios falls within
the range of evaluation points. This means that when utilizing the approximated profit surface, no
extrapolation is involved. Similarly to Bodéré (2023), I then train a deep neural network to approximate
the annual profits.24

To understand the impact of states (Kt, zt) on profitability of various generator types, Table 5
presents the OLS estimates of the profit surface. The dependent variables are annual profits ($ mil-
lion/GW) for each generator type, while the independent variables are the states (Kt, zt). Before dis-
cussing the economic findings, It’s noteworthy that the relatively low R-squares observed with natural
gas and coal imply significant nonlinearity in the relationship between annual profits and these states.
This underscores the critical necessity of employing a deep neural network to approximate the profit
surface.

There are three findings from Table 5. First, there are significant competition effects between any
two types of energy source. Importantly, the business stealing effects of renewables on coal are almost
twice as large as the effects on natural gas. Second, the increase in natural gas prices reduces profits of
natural gas generators and increases profits of all the other generators, especially coal generators. Third,
the rise in electricity demand provides coal generators with nearly twice the benefit it offers natural gas,
while wind and solar gain less from an increase in demand.

24I use an 8 × 32 × 32 × 5 deep neural network in which there are eight input variables (Kt, zt) and five output
variables (Πj , j ∈ {small natural gas, large natural gas, coal, wind, solar}.)
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Table 5: Profit Surface ($ million/GW): OLS Approximation

Small Natural Gas Large Natural Gas Coal Wind Solar

Ksmall natural gas(GW) -1.937*** -1.781*** -1.830*** -0.575*** -0.325***
(0.011) (0.011) (0.013) (0.005) (0.002)

K large natural gas(GW) -2.674*** -2.760*** -2.702*** -0.853*** -0.454***
(0.044) (0.044) (0.056) (0.019) (0.010)

Kcoal(GW) -1.451*** -1.441*** -3.606*** -1.137*** -0.597***
(0.010) (0.010) (0.013) (0.004) (0.002)

Kwind(GW) -0.720*** -0.704*** -1.622*** -0.828*** -0.366***
(0.004) (0.004) (0.006) (0.002) (0.001)

Ksolar(GW) -0.543*** -0.524*** -1.098*** -0.449*** -0.345***
(0.004) (0.004) (0.005) (0.002) (0.001)

Effects of Energy Storage -18.874*** -15.525*** -40.248*** -0.913*** -3.239***
(0.626) (0.625) (0.795) (0.259) (0.134)

Natural Gas Price Shifter -13.998*** -10.730*** 28.329*** 9.539*** 5.119***
(0.119) (0.119) (0.151) (0.051) (0.026)

Demand Shifter 122.477*** 117.552*** 243.441*** 101.649*** 55.710***
(0.725) (0.725) (0.921) (0.307) (0.159)

Constant 114.015*** 99.875*** 58.948*** 31.972*** 20.983***
(1.126) (1.125) (1.430) (0.488) (0.252)

Observations 340,558 340,558 340,558 371,520 371,520
R-squared 0.288 0.265 0.476 0.580 0.601

Notes: The table reports OLS estimates of the profit surface. The dependent variable in each column is the profit ($
million/GW) for each type of generator. Independent variables are capacities of each energy source (GW), the effect of
energy storage zbt ∈ [0, 1], the electricity demand shifter zdt ∈ [0.8, 1.6] and the natural gas price shifter zgt ∈ [1, 5].

5.3 Calibration of Entry Costs and Scrap Values

The parameters to be calibrated25 in the annual model are summarized in Ξannual:

Ξannual = (ϕ
coal
, ϕ

natural gas︸ ︷︷ ︸
mean scrap values

, ψcoal, ψnatural gas︸ ︷︷ ︸
entry costs

, {Iwind
t , Isolar

t }Tt=0︸ ︷︷ ︸
installation costs of renewables

)

The calibration takes two steps. First, I focus on entry costs and mean scrap values associated with
coal and natural gas generators.26 Since no dominant natural gas generator retired in my sample, I
calibrate the mean scrap value of natural gas using the discounted present value of annual maintenance
costs estimated in Elliott (2022).27 I calibrate the remaining parameters by aligning trends in capacities
of coal and natural gas within the data and model simulations. More precisely, I calibrate the entry

25Since I only observe one realization of entry or exit probability for each type of energy in each year, I cannot
estimate the parameters in the annual model in this nonstationary environment.

26I restrict the entry costs per GW to be same for small and large natural gas generators, and in the following
analysis, I sum capacities of small and large generators and report the total as natural gas.

27Without observing firms’ frequently cycling between operating and not operating, scrap values and fixed costs
cannot be separately identified. It is common to assume one of them is zero and estimate the other (Collard-Wexler,
2013). I assume that the mean scrap value is the accumulated annual maintenance (fixed) costs in the future if a
generator continued staying in the market. Therefore, under the infinite-horizon assumption, the mean scrap value
is calculated as the maintenance cost divided by (1− β).
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costs of natural gas generators by matching the capacity increase from 2005 to 2020 in the data with
that from model predictions. No dominant coal generator in the sample retired before 2015 and coal
entry was essentially forbidden because of environmental regulations after 2015.28 Therefore, for coal
generators, I calibrate entry costs by matching the capacity increase from 2005 to 2015 in data and
model predictions, and I calibrate the mean scrap value by matching the capacity reduction between
2015 and 2020 in the same manner.

The calibration proceeds as a nested procedure. In the inner loop, I solve capacities of coal and natu-
ral gas across years in the nonstationary oblivious equilibrium, assuming that they have perfect foresight
about profit shifters {zt}Tt=0, and wind and solar capacities, {Kwind

t ,Ksolar
t }Tt=0. In the outer loop, I search

for parameters that best match capacity changes from model predictions with the data. Wind and solar
capacities {Kwind

t ,Ksolar
t }Tt=0 combine both data between 2005 and 2020 and authoritative projections

from the Department of Energy (2023) and Asmelash and Prakash (2019). Since both historical data
and projections are based on the renewable subsidy scheme before 2020, it is appropriate to use them
in the calibration procedure; The capacities of wind and solar in the counterfactuals are endogenously
determined from the equilibrium in the annual model. Demand and natural gas price shifters are shown
in Figure 2. For the effect of energy storage, I assume that zbt = 0 until 2030, as suggested in Butters
et al. (2021), and they increase linearly until zb

T
= 1.29

Table 6: Parameters Related to Entry and Exit ($ million/GW)

Value Source

Panel A. Entry Costs

Natural Gas 923.4 Matching change in natural gas capacity between 2005 and 2020
Coal 3288.5 Matching change in coal capacity between 2005 and 2015

Panel B. Mean Scrap values

Natural Gas 332.4 Elliott (2022)
Coal 855.8 Matching change in coal capacity between 2015 and 2020

Notes: The table reports the calibration of entry costs and mean scrap values associated with natural
gas and coal generators. The calibration procedure is described in Section 5.3.

Table 6 presents the calibration results for coal and natural gas generators. The calibrated value
of coal entry cost is $3,288.5 million/GW, which is in the range of engineering estimates ($1800 mil-
lion/GW in Schlissel et al. (2008) to $4,500 million/GW in ESFC (2023). The entry cost of natural gas
generators is calibrated to be $923.4 million/GW, about one third that of coal. It also aligns with engi-
neering estimates between $780 million/GW and $1,110 million/GW according to the Annual Electric
Generator Reports of EIA. The means of scrap values are calibrated as $332 million/GW for natural gas
generators and $855 million/GW for coal generators. The scrap values are a combination of saved fixed

28The Carbon Pollution Standard for New Plants (Section 111(b)) effectively prohibit the establishment of new
coal power plants (Abito et al., 2022). Therefore, I assume that ψcoal = ∞ for coal after 2015.

29I experiment with zb
T

∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. I find that all of these values give similar calibration values
for parameters associated with coal and natural gas. But different trajectories yield different entry costs associated
with wind and solar, especially after 2030. Therefore, I choose zb

T
= 1, which provides the closest calibration of

renewable installation costs when compared with engineering estimates.
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operational costs in the future and decommissioning costs,30 and my calibration for coal suggests that
the former outweighs the latter.

In the second step, I calibrate time-varying installation costs associated with wind and solar. Given
the equilibrium coal and natural gas capacity trajectories determined in the first step of calibration, I
back out entry costs of wind and solar that are consistent with their historical and projected capacities,
using free-entry conditions (3).31 Then I add back subsidies renewables received to obtain calibrations
of installation costs for wind and solar in each year.

Figure 4 compares the model-calibrated installation costs with the engineering estimates. They align
closely with each other. Initially, the installation costs of wind were about half of those of solar. However,
installation costs of solar declined rapidly since 2015 and became lower than wind after 2018.
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Figure 4: Installation Costs: Comparison between Model Calibration and Engineering Estimates

Notes: The figures compare installation costs of wind and solar from model calibration with those from engineering
estimates.

6 Counterfactual Results

In this section, I study the equilibrium effects of renewable subsidies and examine how the lengths of
subsidies influence those effects. I solve the entry and exit model described in Section 3 to predict
average capacity by energy source under counterfactual subsidies that change the time-varying entry
costs of renewables. Then I evaluate the carbon emissions and generation costs by solving the hourly
model in each year along the transition path.

30The decommissioning costs come from utility separation, removal of asbestos and other dangerous materi-
als, managing employees who are no longer able to work at the power plant following its closure, environmental
cleanup, and restoring the site to a secure and ecologically sustainable state.

31I assume that the capacity cap for new entrants is 10GW for each type of generator, about twice the maximum
newly built capacity observed in the data. Therefore, the upper bound is never binding in the calibration. I use the
engineering estimates for solar before 2018, when there was no solar entry.
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6.1 The Effects of Renewable Subsidies

The first counterfactual quantifies the effects of renewable subsidies in place between 2005 and 2020 on
carbon emissions, investment, and generation costs by comparing the path with subsidies and the one
without them.

Figure 5 plots mean capacities of different energy sources with subsidies between 2005 and 2020
with and without subsidies.32 Without subsidies in ERCOT, there would be no wind and solar until 2030,
at which point installation costs would have decreased sufficiently, paving the way for a rapid expansion
of renewable capacities. Coal capacity without subsidies increased by 3.8GW, about 22.6% of maximum
coal capacity with subsidies. The increase takes place very early in the transition, even though there is
only 0.85GW of wind capacity with subsidies. Consequently, the decreased coal expansion under subsi-
dies cannot be explained by a static model. Instead, subsidies that promote more renewables intensify
future competition and diminish the appeal of entering the market. Therefore, fewer coal generators can
afford their significant entry costs, leading to a reduction of coal expansion. With natural gas generators’
much smaller entry costs, their capacity expands more in the middle of the transition without subsidies,
after sufficient retirement of coal generators and before the renewables start to expand.33

32I assume that after 2020, subsidies phase out linearly until 2030.
33The absence of reactions by natural gas generators before 2015 can be attributed to both the expansion of coal

and high natural gas prices. Aggressive coal expansion erodes profits of natural gas, and high input prices reduce
the benefits that natural gas generators derive from having fewer renewable competitors. Appendix A-3 shows that
natural gas capacity will increase without subsidies before 2015 in either of the following two cases. In the first
case, I reduce the natural gas price to $4.08/MMBtu whenever it exceeds that limit before 2015. In the second case,
the coal expansion is mitigated by a reduction in the capacity cap for new coal generators from 10GW to 5GW.
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(d) Solar

Figure 5: Transition Paths with and without Subsidy

Notes: The solid blue lines represent mean capacities of different energy sources with subsidies in place between
2005 and 2020. The dashed red lines are capacity paths of different energy sources when subsidies are removed.

Carbon emissions are affected by generator entry and exit and generator adjustments to their produc-
tion decisions. Figure 6 displays annual and cumulative carbon emissions since 2005 with and without
subsidies between 2005 and 2020 and that without subsidies. Figure 6b shows that renewable subsidies
reduce cumulative carbon emissions by 1.71 billion tons through 2060. They reduce environmental costs
by $23.9-$121.8 billion, evaluated at the social cost of carbon of $36.6/ton (Carleton et al., 2022) or
$185/ton (Rennert et al., 2022). Figure 6a indicates that the increase in carbon emissions from initial
coal expansion persists for multiple decades. I further calculate the differences in carbon emissions from
coal generation with and without subsidies. I find that 66% of carbon savings can be explained by the
deterred coal expansion.
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(a) Annual Carbon Emissions
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(b) Cumulative Carbon Emissions

Figure 6: Effects of Subsidies on Carbon Emissions

Notes: Panel (a) presents carbon emissions in each year and Panel (b) presents cumulative carbon emissions since
2005. The solid blue lines represent outcomes along the transition path with renewable subsidies in place between
2005 and 2020. The dashed red lines represent counterfactuals in which those renewable subsidies were removed.

In addition to considering environmental effects, I consider the effects of subsidies on economic
surpluses, including investment and electricity generation costs. Climate policies are often at the heart
of political debate partly because the evaluation of environmental benefits is based on the politically
contentious social cost of carbon (Hahn and Ritz, 2015). Therefore, it is also useful to examine the
effectiveness of renewable subsidies from an economic surplus standpoint. Figure 7 presents cumulative
investment and generation costs over the entire simulation horizon. The investment includes installa-
tion costs paid by all new entrants net of the mean scrap values of retired generators. Through 2060,
renewable subsidies save generation costs by $13.27 billion associated with an increase in investment by
$20.09 billion. Subsidies increase investment because the earlier adoption of renewables does not reap
the benefits from reduction in installation costs in the future. The generation cost reductions mainly
come from less natural gas capacity when there are subsidies. The small distortion for the economic
surplus implies that the subsidies can effectively function with a much lower social cost of carbon,
$3.99/ton, compared to recent estimates.
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(a) Cumulative Investment Costs
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(b) Cumulative Generation Costs

Figure 7: Effects of Renewable Subsidies

Notes: Panel (a) presents cumulative investment since 2005, and Panel (b) presents cumulative electricity gen-
eration costs since 2005. The cumulative investment and generation costs are both calculated as present discount
values with a discount rate 0.95. The solid blue lines represent outcomes along transition path with renewable sub-
sidies in place between 2005 and 2020. The dashed red lines represent the counterfactuals in which the subsidies
are removed.

6.2 The Effects of Different Subsidy Horizons

The time horizon for renewable subsidies is a crucial aspect of policy design, and it presents a significant
challenge for policymakers. This challenge is evident in the recurring cycle of subsidy expiration and re-
authorization that occurred before 2020. Furthermore, it’s underscored by the recent commitment in the
IRA 2022 to extend these subsidies for an at least additional 10 years. The uncertainty surrounding the
duration of these subsidies highlights the difficulty policymakers encounter when making decisions in
this regard. To better understand how different time horizons affect the performance of those subsidies,
I study the impacts of different-horizon subsidies on transitional dynamics and carbon emissions.

I simulate the transition paths under alternative subsidy horizons with the generosity of the subsidies
fixed at 27$/MWh for PTCs and 30% of installation costs for ITCs. Then, I evaluate the environmental
and economic surpluses along those counterfactual transition paths. To illustrate the mechanisms, I
display the details of transitional dynamics and their impacts for a short-horizon policy (2005–10), a
medium-horizon policy (2005–20, same as Section 6.1 and presented for comparison purposes) and a
long-horizon policy (2005–32). I summarize the effects of subsidies with other horizons in Table 7.

Figure 8 presents the expected capacities of different energy sources. Panel 8c and 8d show the
trajectories of wind and solar capacities, which are directly affected by the subsidies. Short-horizon
and medium-run subsidies do not change the renewable subsidies by 2060, but only the timing when
renewables expand. Long-horizon subsidies can impact both investment timing and the resulting wind
and solar capacity. This suggests that subsidies with very long horizon will result in wind investment that
would never occur throughout the transition without those subsidies. Compared with shorter-horizon
subsidies, by 2060, the subsidies between 2005–32 increase wind capacity by 26.6GW and decrease solar
capacity by 36.7GW. The difference between wind and solar comes from the diffence in the nature of
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PTCs and ITCs. With the uniform nature of PTCs, eligible wind generators can receive the same amount
of subsidies regardless of the timing of entry, but with installation costs steadily decreasing, eligible
solar generators will receive less subsidies from later investment. Additional wind capacity reduces solar
profits, and therefore, reduces solar capacity.

Subsidies with different horizons impact the timing of renewable expansions due to bunching effects.
Short-horizon subsidies encourage significant wind capacity growth between 2005 and 2010 because
renewables invest earlier to secure their eligibility, which depends on entry before the expiration year.
Very-long-horizon subsidies exhibit another form of bunching, where wind generators prefer not to enter
the early phase of the transition but cluster in years when the subsidies are about to expire. The reason
is that, by investing later, besides subsidies, wind generators can also reap the benefits of exogenous
reduction in installation costs.

The direct effects on wind and solar capacities will significantly influence the entry and exit decisions
of coal and natural gas generators, as demonstrated in Panel 8b and Panel 8a. Panel 8b reveals a
nonlinearity between the subsidy horizon and the effectiveness of driving out coal capacity. A short-
horizon subsidy speeds up wind investment and greatly intensifies competition for coal generators in the
very near future. The long-horizon subsidy can deter coal entry because, even though the competition
will arise from the more distant future, it will be more intense due to the significantly larger wind
capacity replacing solar. Solar has a smaller competitive impact on coal compared to wind because it
can only produce during the daytime.

Natural gas generators respond differently to changes in renewable capacities compared to coal
generators. With short-horizon subsidies, the reduced competition from fewer coal generator almost
cancels out the impact of more intensive competition from wind before 2010. Consequently, there is little
difference in natural gas capacity before 2015 between short and medium-horizon subsidies. However,
long-horizon subsidies incentivize more early natural gas expansion in the transition, with more coal
capacity being replaced and less competition from wind between 2005 and 2020. These variations in
responses between coal and natural gas generators stem from differences in competition effects in the
presence of increased renewable capacity, as well as disparities in entry costs for these generators. For
instance, the intense competition resulting from additional wind capacity in 2025-2032, incentivized
by very long-horizon subsidies, can deter coal entry as early as 2006 because coal takes many years
to recover its high entry costs. In contrast, natural gas can enter between 2005 and 2020 in the long-
horizon subsidy path because renewables have a smaller impact on natural gas profits, allowing them to
recover their entry costs more quickly due to their lower entry costs.
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(c) Wind
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Figure 8: Transition Paths: Alternative Horizons

Notes: The figure plots expected capacities of natural gas, coal, wind, and solar between 2005 and 2060 under
subsidies with different horizons. The solid blue lines represent the transition path with subsidies in place between
2005 and 2020, as in Figure 5, for ease of comparison. The dash-dotted black lines represent the transition path
with subsidies in place between 2005 and 2032. The dashed red lines represent the transition paths under subsidies
between 2005 and 2010.

Differences in transitional dynamics induced by different subsidy horizons have implications for both
environmental consequences and economic surpluses. Figure 9a compares cumulative carbon emissions
since 2005 associated with varying subsidy horizons. First, a short-horizon subsidies have better per-
formances in carbon emissions through the entire transition path than the medium-horizon subsidies
actually implemented between 2005 and 2020. This is a combined effect of accelerated wind entry
and the deterrence of coal in the initial period of the transition. Second, the effects on cumulative car-
bon emissions can be heterogeneous across time. The cumulative carbon emissions by 2060 are lowest
under the long-horizon subsidies but, the short-horizon subsidies perform the best through 2030. The
non-linearity between subsidy horizons and effects on cumulative carbon emissions cautions a careful
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design of subsidy horizons and underscores the importance of considering rich dynamics from forward-
looking generators.

Turning to the impacts on generation costs displayed in Figure 9b, it reveals a trade-off about the
effects of subsidy horizons: the longer horizons deliver more carbon reductions are associated with less
reduction in generation costs. The long-horizon subsidies which reduce the most carbon emission by
2060 result in highest generation costs, largely because of the early expansion of high-cost natural gas
capacity.
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Figure 9: Effects of Alternative Subsidy Horizons on Carbon Emissions and Generation Costs

Notes: Panel (a) presents cumulative carbon emission, and Panel (b) presents present discounted value of gen-
eration costs, both since 2005. The solid blue lines represent the transition path with subsidies in place between
2005 and 2020, as in Figure 5, for ease of comparison. The dash-dotted black lines represent the transition path
with subsidies in place between 2005 and 2032. The dashed red lines represent the transition paths under subsidies
between 2005 and 2010.

To compare the performances from subsidies with varying horizons, Table 7 reports the reductions
in environmental costs between transition paths with different subsidies and the unsubsidized path. The
environmental costs are calculated in terms of their present discounted values, using the same discount
rate applied by generators in the entry and exit model. They are evaluated at two different social cost
of carbon values: $36.6/ton and $185/ton. The table demonstrates that 5-year short-horizon subsidies
can effectively reduce carbon emissions and save on environmental costs in a timely manner. They can
achieve similar present discounted savings in environmental costs as subsidies with durations of ten
years or longer, including those extending beyond twenty years. The non-linearity between the subsidy
time horizon and environmental cost reduction emphasizes the importance of a carefully designed time
horizon. For instance, among the subsidies under consideration, 22-year subsidies result in the most
substantial environmental cost reduction, while subsidies that are 3 years shorter than those perform
poorly in reducing carbon emissions. The reason behind this is that the 19-year subsidies delay wind
investment, but the additional wind capacity is not sufficient to deter coal entry in the initial transition
process.

Table 7 also reports the present discounted values of changes in total investment, tax expenditure,
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private investment (investment net of tax expenditure), and generation costs when compared with the
unsubsidized path. As expected, subsidies with longer horizons put heavier burden on tax payers. A five-
year subsidies can save $2.7 billion tax expenditure than a twenty-two-year subsidies with comparable
environmental cost savings. The appeal of short-term subsidies lies in their minimal tax burden and their
comparable impact on carbon reduction. Tax burden plays a crucial role in shaping public perception
and, consequently, in determining the feasibility of such policies, as highlighted by Christian Gollier and
Mar Reguant in Blanchard et al. (2021) that "the visibility of the levy to the payers (consumers or the
taxpayers) often shapes attitudes much more than the actual amount of money levied upon them to
avoid the emission of one ton of CO2." Table 7 also shows a quadratic relationship between subsidy
horizons and investment. The longer-horizon subsidies have lower investment in present discounted
term because wind investment delays due to the bunching effect. The reduction in generation costs also
exhibit a similar quadratic relationship because of not only delayed wind investment but the resulting
more natural gas capacity in the early phase of the transition process.34

Table 7: Environmental and Economic Impacts of Subsidy Horizons ($ billion)

Environmental Cost (-) Investment (+) Tax Expenditure (+) Private Investment (+) Generation Cost (-)

1 year [19.2,97.6] 3.7 0.5 3.2 3.1
5 years [32.4,165.2] 12.3 1.0 11.3 8.4
10 years [32.6,166.0] 16.0 1.4 14.6 10.3
15 years [18.9,96.3] 18.6 1.8 16.9 11.9
16 years [23.9,121.8] 20.1 1.5 18.6 13.3
17 years [31.9,162.7] 16.3 1.8 14.5 12.2
19 years [15.9,80.8] 15.7 2.3 13.5 11.2
22 years [35.6,181.5] 7.8 3.7 4.1 4.9
25 years [35.3,179.7] 5.4 4.2 1.2 3.2
28 years [34.0,173.2] 1.8 4.7 -2.9 1.0

Notes: The table compares environmental cost from carbon emissions (evaluated at either $36.6/ton or $185/ton), investment, tax expendi-
ture, private investment (investment net of tax expenditure) and generation costs, between the transition path with varying subsidy horizons
and the unsubsidized path. All terms are in their present discounted values, with discount rate same as generators, 0.95.

7 Conclusion

This paper studies the effects of renewable subsidies on carbon emissions, total investment, and genera-
tion costs. The subsidies target clean energy sources, but those effects are realized through equilibrium
responses of coal and natural gas generators via both changes in production decisions and entry and exit.
To simulate how subsidies change the transition path, I build a nonstationary model of generator entry
and exit at the annual level. To determine annual profits, I nest the model with a secondary dynamic
model of the wholesale electricity market in which all generators compete to produce electricity every
hour and where coal and natural gas generators face start-up costs. I apply the models to ERCOT, the
electricity grid covering the majority of Texas. I estimate the hourly model using detailed hourly data

34While some may prioritize environmental costs, given the fat-tailed uncertainty of climate change, as evidenced
by the substantial estimates of the social cost of carbon Weitzman (2011), it remains valuable to analyze the eco-
nomic surplus resulting from investment and generation costs. This is because the funds saved can be redirected
toward other pollution reduction efforts, further contributing to carbon emissions reduction. I calculate the oppor-
tunity cost of reducing carbon emissions using the increased economic surplus (as the difference between additional
investment costs and the reduced generation costs) at a marginal abatement cost of $12/ton, the average of the
range of marginal abatement costs estimated by Meng (2017). I find that five-year subsidies still stand out among
subsidies shorter than twenty years by reducing environmental costs by $20.36 billion.
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and calibrate the annual model so that it is consistent with observed and projected capacity changes in
ERCOT.

I find that renewable subsidies can reduce cumulative carbon emissions by 1.7 billion tons through
2060 and that 66% of the effect comes from reduced coal expansion in the initial year of the transi-
tion. The deterrence of coal expansion comes before renewables enter at large scale because the lasting
presence of renewable subsidies increases future competition and therefore shifts the expectations of
coal generators. This cannot be captured by a model that does not incorporate forward-looking perspec-
tive of generators. In addition to their environmental impacts, subsidies reduce the costs of generating
electricity by $13.3 billion with an extra investment of $20.1 billion, which implies that the renewable
subsidies can work with a social cost of carbon as low as $3.99/ton.

To understand how the policy maker can design the horizon of subsidies to achieve better perfor-
mance by leveraging the dynamic mechanism, I examine the effects of subsidies with varying durations.
The analysis reveals a nonlinear relationship between subsidy durations and carbon reductions. A Short-
horizon subsidy can accelerate more wind investment early in the transition and deter the entry of dirty
coal generators. Though a long-enough-horizon subsidy can postpone wind investment, it can facilitate
coal-to-gas switch because additional wind capacity incurred by the subsidy have stronger competition
effects on coal than natural gas. Both of the short-horizon and long-horizon subsidies can outperform
the medium-horizon one, including the one actually implemented between 2005–20.

There are two important future directions, building upon the framework presented in this paper.
First, given the nature of intermittent generation, more renewable capacity can increase the volatility
of the electricity grid. Lacking energy storage, the grid requires generators with lower start-up costs
to cycle between on and off multiple times in a day. Low-start-up-cost, high-marginal-cost open-cycle
natural gas generators, therefore, can complement renewables. It is therefore important to consider
the role of such generators in grid stability in the energy-transition process. Second, through more
detailed modeling of battery operations in the hourly model and incorporating the investment costs of
the batteries, the framework can be extended to study the equilibrium responses of fossil fuel generators
to the development of energy storage, which is important to evaluate the environmental benefits from
investing in energy-storage technologies.
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APPENDICES FOR ONLINE PUBLICATION

I Details in Data Preparation for Estimation

The initial dataset comprises data collected at an hourly frequency throughout a given day. Nonetheless,
the model is confined to representing only two hours: a single peak hour and an individual off-peak
hour. To facilitate the alignment of the data with the model, I’ve delineated the peak hour as a time
window spanning from 1:00 PM to 8:00 PM, while the off-peak hour encompasses the period from 9:00
PM to 12:00 AM of the subsequent day. By calculating averages within these designated time intervals,
I condense electricity demand, electricity prices, renewable output, and electricity generation from each
generator into the representation of two model hours.

The process of condensing the on and off statuses of generators presents more complexity, mainly
due to the potential occurrence of generator start-ups or shutdowns in the middle of a time window.
However, the majority of instances reveal consistent generator statuses, making it feasible to mirror
these statuses from the original data. In nearly all cases, if a generator does change its status, it does so
only once within a single time window. I define a generator’s status by two scenarios.

In scenarios where a generator exhibit an on(off) state in both the preceding and subsequent hours,
yet manifest a status transition within the current time window, I infer the generator to be off(on) for the
present hour. Otherwise, I compute the proportion of hours in which the generator is on or off within the
time window. This proportion guides the determination of a generator’s status: if the share of on-hours
exceeds that of off-hours, the generator’s status is considered on; otherwise, it is categorized as off.

II Energy Storage and Curtailment from Renewables in the Hourly

Model

Instead of modelling the charging and discharging behaviors of energy storage as in Butters et al. (2021),
I model the consequences of their behaviors as stabilizing residual demand for coal and natural gas
generators, following Karaduman (2020). Specifically, I denote zbt ∈ [0, 1] as a measure of the extent
that residual demand is stabilized by energy storage and the residual demand with energy storage zbt as
drh(z

b
t ). Without energy storage, the residual demand is drh(0) = dh−(qWh +qSh ). With full energy storage,

I assume there is no variation in residual demand and drh(1) = E[dh]−E[qWh + qSh ]. With zbt ∈ (0, 1), the
residual demand drh(z

b
t ) is a convex combination of drh(0) and drh(1)

drh(z
b
t ) = (1− zbt )× drh(0) + zbt × drh(1).

When electricity generation from wind and solar exceeds electricity demand in hour h, that is
drh(z

b
t ) < 0, I assume that they will be curtailed proportional to their output respectively in that hour.

Specifically,

Qcurtailment
h = −drh(zbt )× I{drh(zbt ) < 0}
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III Optimal Output and Expected Profits of Dominant Generators

Conditional on operating, given electricity price ph, the interior solution of a dominant generator’s profit
maximization problem is given by

q∗ih =
ph − (pjhH

j + µj + σc,jηih)

αj
qj + qj

Therefore, subject to the production constraint [qj , qj ], the optimal output is given by

qih =


q∗ih ηih ∈ (η

ih
, ηih)

qj ηih < η
ih

qj ηih > ηih

where

ηih =
ph − pjhH

j

σc,j

η
ih

=
ph − pjhH

j − αj qj−qj

qj

σc,j

Integrating out idiosyncratic shocks ηih, the expected profits given ph is given by 35

E[πih|ph] = (
(ph − pjhH

j − µj)2

2αj
qj + (ph − pjhH

j − µj)qj)(Φ(ηit)− Φ(η
ih
))

− σc,j(
(ph − pjhH

j − µj)

αj
qj + qj)(ϕ(η

ih
)− ϕ(ηit))

+
(σc,j)2

2αj
qj(Φ(ηit)− Φ(η

ih
) + η

ih
ϕ(η

ih
)− ηitϕ(ηit))

+ ((ph − pjhH
j − µj)qj − αj

2qj
(qj − qj)2)Φ(η

ih
)

+ σc,jqjϕ(η
ih
)

+ (ph − pjhH
j − µj)qj(1− Φ(ηih))

− σc,jqjϕ(ηih)

35I use the fact that if η ∼ T RN (0, 1, a, b), then

E[η] =
ϕ(a)− ϕ(b)

Φ(b)− Φ(a)

and

E[η2] = 1 +
aϕ(a)− bϕ(b)

Φ(b)− Φ(a)
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IV Figures

IV.1 ERCOT Operates an Isolated Grid

Figure A-1: ERCOT Territory
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IV.2 Calibration of Installation Costs under Alternative zb
T
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(b) Solar Installation Costs

Figure A-2: Comparison of Renewable Installation Costs under Alternative Energy Storage Tra-
jectories

Notes: The figure compares calibration of wind and solar installation costs under alternative
trajectories of energy storage. I assume that the effects of energy storage remain zero until
2030 and start to increase linearly. For other assumptions and details about the calibration
procedure, see Section 5.3.
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IV.3 Additional Counterfactuals when Renewable Subsidies were Removed
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Figure A-3: Additional Counterfactuals when Subsidies were Removed

Notes: The figures provide additional counterfactuals when renewable subsidies were removed
to examine why natural gas capacity remains the same as with subsidies before 2015 in Figure
5. The blue solid line represents the natural gas and coal capacity without subsidies, same as
Figure 5. The red dash lines represent the natural gas and coal capacities without subsidies
when natural gas prices are imposed to be below $4.08 before 2015. The black dash-dot lines
represent counterfactual capacities without subsidies when the maximum newly built capacity
for coal is reduced from 10GW to 5GW so that coal can only enter less aggressively.
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V Additional Tables

Table A-1: Summary Statistics by
Hours (GWh)

Off-peak Hours Peak Hours
Mean SD Mean SD

dh 37.21 5.38 45.13 10.06
ωW
h 0.383 0.154 0.306 0.166
ωS
h 0.105 0.050 0.404 0.180

Notes: The calculation relies on the hourly
electricity demand and the utilization factors
of wind and solar in ERCOT for the year 2020.
Peak hours, which include those between 1:00
PM and 8:00 PM, are consolidated as one,
while the remaining hours are grouped as off-
peak hours. Subsequently, the average de-
mand and utilization factors are computed for
both peak and off-peak hours on a daily basis.
Finally, summary statistics are derived from
these averaged values.

Table A-2: Estimates of Demand Shock Process (GWh)

(1) (2) (3)
VARIABLES AR(1) Off-peak hours Peak hours

ρd 0.710*** 0.463*** 1.577***
(0.026) (0.014) (0.053)

Observations 731 365 366
Adjusted R-squared 0.504 0.750 0.710
σd 5.67 2.69 5.41

Notes: Table reports the estimates of demand shock process. Demand
shock is the deviation of electricity demand to its mean, by two types of
hours. Column (1) group all hours and estimate an AR(1) model, illus-
trating that the electricity demand is a stationary process overall. Column
(2) and (3) estimate two AR(1) model separately for peak hours and off-
peak hours. σd is calculated as the standard deviation of AR(1) residuals.
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Table A-3: Wind Productivity Process

(1) (2) (3)
VARIABLES AR(1) Off-peak hours Peak hours

ρw 0.632*** 0.545*** 0.732***
(0.029) (0.040) (0.041)

Observations 731 365 366
Adjusted R-squared 0.398 0.341 0.461
σw 0.124 0.122 0.125

Notes: Table reports the estimates of wind utilization factor process.
Wind utilization factor is the ratio of wind generation and capacity, by
two types of hours. Column (1) group all hours and estimate an AR(1)
model, illustrating that the wind utilization factor is a stationary process
overall. Column (2) and (3) estimate two AR(1) model separately for
peak hours and off-peak hours. σw is calculated as the standard deviation
of AR(1) residuals.

Table A-4: Decomposition of Profits, by Type of
Generators ($ million)

Gas: Small Gas: Large Coal

Revenue 37.45 45.99 99.71
Generation Costs 28.90 36.79 79.78
Static Profits 8.55 9.21 19.93
Start-up Costs 2.38 4.75 3.90
Unobservables 4.21 6.07 3.70
Profits 10.38 10.52 19.73

Notes: The table reports different components of profits by
types of generators, evaluated at the estimated parameters.
For the details of computation, see section 4.
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Table A-5: Utilization Factors, by Residual Demand (GWh)

Gas: Small Gas: Large Coal

Data Model Data Model Data Model

Panel. A Mean

E[q|drh < 17.3] 0.80 0.80 0.59 0.64 0.55 0.54
E[q|17.3 ≤ drh < 26.2] 0.85 0.84 0.73 0.71 0.65 0.64
E[q|26.2 ≤ drh < 35.2] 0.88 0.87 0.82 0.76 0.72 0.70
E[q|35.2 ≤ drh < 44.1] 0.90 0.90 0.86 0.82 0.81 0.85
E[q|drh ≥ 44.1] 0.93 1.00 0.93 0.90 0.92 1.00

Panel.B Standard Deviation

SD[q|drh < 17.3] 0.10 0.11 0.06 0.03 0.21 0.11
SD[q|17.3 ≤ drh < 26.2] 0.10 0.12 0.15 0.14 0.21 0.16
SD[q|26.2 ≤ drh < 35.2] 0.09 0.11 0.12 0.15 0.21 0.17
SD[q|35.2 ≤ drh < 44.1] 0.08 0.11 0.10 0.15 0.17 0.12
SD[q|drh ≥ 44.1] 0.06 0.03 0.10 0.14 0.09 0.00

Notes: The table reports means and standard deviations of utilization factors, con-
ditional on different realizations of residual demand(GWh). For both data and simu-
lations, I restrict observations when generators are on, and neither minimum output
requirement nor capacity is not binding.

Table A-6: Operation Probabilities, by Residual Demand (GWh)

Gas: Small Gas: Large Coal
Data Model Data Model Data Model

Panel.A Conditional on Not Operating in Previous Hour

drh < 1.73 0.10 0.16 0.05 0.05
drh ≥ 1.73, drh < 2.62 0.22 0.29 0.09 0.11
drh ≥ 2.62, drh < 3.52 0.35 0.49 0.28 0.24 0.05 0.03
drh ≥ 3.52, drh < 4.41 0.66 0.78 0.37 0.53
drh ≥ 4.41 0.82 0.96 0.66 0.88 0.21 0.33

Panel.B Conditional on Operating in Previous Hour

drh < 1.73 0.63 0.62 0.58 0.61
drh ≥ 1.73, drh < 2.62 0.76 0.78 0.73 0.78
drh ≥ 2.62, drh < 3.52 0.89 0.88 0.90 0.91 0.99 0.99
drh ≥ 3.52, drh < 4.41 0.95 0.96 0.97 0.98
drh ≥ 4.41 1.00 1.00 0.99 1.00 0.99 0.99

Notes: The table reports the probability of being on, depending on whether gen-
erators are on or off in the previous hour. They are calculated under different
realizations of residual demand (GWh). For natural gas generators, the realiza-
tions of residual demand are consolidated into five groups and for coal genera-
tors, they are grouped into two categories based on whether they are above 44.1
GWh or not.
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Table A-7: Probability of Switching from Off to On, by Natural
Gas Prices ($/MMBtu)

Small Natural Gas Large Natural Gas Coal
Data Model Data Model Data Model

pGh < 2.4 0.39 0.38 0.22 0.21 0.05 0.03
pGh > 2.4 0.28 0.35 0.14 0.15 0.07 0.13

Notes: The table reports the probability of switching from off to on, by dif-
ferent realizations of natural gas prices. They are categorized into two groups
based on whether natural gas prices are above $2.4/MMBtu or not.

Table A-8: Pre-specified Points of (Kt, zt) to Solve the Hourly
Model

Parameters Grid Points

Number of Small Gas Generators 1 30 60 90 120 160 200 240
Number of Large Gas Generators 1 10 20 30
Number of Coal Generators 1 10 20 30 40 80
Wind Capacity (GW) 10 20 40 60 100 150
Solar Capacity (GW) 1 20 40 60 100 150
effects of energy storage 0, 0.3, 0.6, 0.9
natural gas price shifter 1 2 5
demand shifter 0.8 1 1.2 1.4 1.6

Notes: The table reports grid points of pre-specified (Kt, zt) that are used
to solve the hourly model and collect annual profits. Note that for small
natural gas, large natural gas and coal, instead of directly specifying capac-
ities, I specify the number of generators in each type and then convert them
to capacities. The collected annual profits are then used as input to train
a deep neural networks to obtain a reliable but computationally fast profit
function that serves as payoff in the annual entry/exit model.
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